Coots commited on
Commit
75e2b50
·
verified ·
1 Parent(s): 5e2260e

Create index.html

Browse files
Files changed (1) hide show
  1. index.html +168 -0
index.html ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, request, jsonify, send_file
2
+ from flask_cors import CORS
3
+ import joblib
4
+ import xgboost as xgb
5
+ import numpy as np
6
+ import json
7
+ import math
8
+ import os
9
+ import logging
10
+
11
+ app = Flask(__name__)
12
+ CORS(app)
13
+ logging.basicConfig(level=logging.INFO)
14
+
15
+ # Load models
16
+ try:
17
+ rf = joblib.load("rf_model.pkl")
18
+ xgb_model = xgb.Booster()
19
+ xgb_model.load_model("xgb_model.json")
20
+ app.logger.info("✅ Models loaded successfully.")
21
+ except Exception as e:
22
+ app.logger.error(f"❌ Error loading models: {e}")
23
+ raise e
24
+
25
+ # Load tile metadata
26
+ with open("tile_catalog.json", "r", encoding="utf-8") as f:
27
+ tile_catalog = json.load(f)
28
+
29
+ with open("tile_sizes.json", "r", encoding="utf-8") as f:
30
+ tile_sizes = json.load(f)
31
+
32
+ @app.route("/")
33
+ def home():
34
+ return send_file("index.html")
35
+
36
+ @app.route('/recommend', methods=['POST'])
37
+ def recommend():
38
+ try:
39
+ data = request.get_json()
40
+
41
+ required = ['tile_type', 'coverage', 'area', 'price_range']
42
+ if not all(k in data for k in required):
43
+ return jsonify({"error": "Missing required fields"}), 400
44
+
45
+ tile_type = data['tile_type'].lower()
46
+ if tile_type not in ['floor', 'wall']:
47
+ return jsonify({"error": "Invalid tile type"}), 400
48
+
49
+ validate_positive_number(data['coverage'], "coverage")
50
+ validate_positive_number(data['area'], "area")
51
+
52
+ pr = data['price_range']
53
+ if (not isinstance(pr, list) or len(pr) != 2 or pr[0] < 0 or pr[1] <= 0 or pr[0] >= pr[1]):
54
+ return jsonify({"error": "Invalid price range"}), 400
55
+
56
+ features = prepare_features(data)
57
+ xgb_pred = float(xgb_model.predict(xgb.DMatrix(features))[0])
58
+ rf_pred = float(rf.predict_proba(features)[0][1])
59
+ combined_score = (xgb_pred + rf_pred) / 2
60
+
61
+ recommended = filter_products(
62
+ tile_type=tile_type,
63
+ min_price=pr[0],
64
+ max_price=pr[1],
65
+ preferred_sizes=data.get("preferred_sizes", []),
66
+ min_score=0.5
67
+ )
68
+
69
+ return jsonify({
70
+ "recommendation_score": round(combined_score, 3),
71
+ "total_matches": len(recommended),
72
+ "recommended_products": recommended[:5],
73
+ "calculation": calculate_requirements(data['area'], data['coverage'])
74
+ })
75
+
76
+ except Exception as e:
77
+ app.logger.error(f"Error in /recommend: {e}")
78
+ return jsonify({"error": "Internal server error"}), 500
79
+
80
+ @app.route('/calculate', methods=['POST'])
81
+ def calculate():
82
+ try:
83
+ data = request.get_json()
84
+
85
+ for k in ['tile_type', 'area', 'tile_size']:
86
+ if k not in data:
87
+ return jsonify({"error": f"Missing field: {k}"}), 400
88
+
89
+ tile_type = data['tile_type'].lower()
90
+ if tile_type not in ['floor', 'wall']:
91
+ return jsonify({"error": "Invalid tile type"}), 400
92
+
93
+ tile_size_key = data['tile_size']
94
+ if tile_size_key not in tile_sizes:
95
+ return jsonify({"error": "Invalid tile size"}), 400
96
+
97
+ validate_positive_number(data['area'], "area")
98
+
99
+ tile_info = tile_sizes[tile_size_key]
100
+ area_per_tile = tile_info['length'] * tile_info['width']
101
+ tiles_needed = math.ceil((data['area'] / area_per_tile) * 1.1)
102
+ tiles_per_box = tile_info.get('tiles_per_box', 10)
103
+ boxes_needed = math.ceil(tiles_needed / tiles_per_box)
104
+
105
+ matching = [
106
+ p for p in tile_catalog
107
+ if p['type'].lower() == tile_type and p['size'] == tile_size_key
108
+ ]
109
+
110
+ return jsonify({
111
+ "tile_type": tile_type,
112
+ "area": data['area'],
113
+ "tile_size": tile_size_key,
114
+ "tiles_needed": tiles_needed,
115
+ "boxes_needed": boxes_needed,
116
+ "matching_products": matching[:3],
117
+ "total_matches": len(matching)
118
+ })
119
+
120
+ except Exception as e:
121
+ app.logger.error(f"Error in /calculate: {e}")
122
+ return jsonify({"error": "Internal server error"}), 500
123
+
124
+ def prepare_features(data):
125
+ tile_type_num = 0 if data['tile_type'] == 'floor' else 1
126
+ price_per_sqft = data['price_range'][1] / data['coverage']
127
+ budget_efficiency = data['coverage'] / data['price_range'][1]
128
+
129
+ return np.array([[
130
+ tile_type_num,
131
+ data['area'],
132
+ data['coverage'],
133
+ data['price_range'][0],
134
+ data['price_range'][1],
135
+ price_per_sqft,
136
+ budget_efficiency
137
+ ]])
138
+
139
+ def filter_products(tile_type, min_price, max_price, preferred_sizes, min_score=0.5):
140
+ results = []
141
+ for p in tile_catalog:
142
+ if (
143
+ p['type'].lower() == tile_type and
144
+ min_price <= p['price'] <= max_price and
145
+ (not preferred_sizes or p['size'] in preferred_sizes)
146
+ ):
147
+ price_score = 1 - ((p['price'] - min_price) / (max_price - min_price + 1e-6))
148
+ size_score = 1 if not preferred_sizes or p['size'] in preferred_sizes else 0.5
149
+ score = (price_score + size_score) / 2
150
+ if score >= min_score:
151
+ results.append({**p, "recommendation_score": round(score, 2)})
152
+ return sorted(results, key=lambda x: x['recommendation_score'], reverse=True)
153
+
154
+ def calculate_requirements(area, coverage):
155
+ min_tiles = math.ceil(area / coverage)
156
+ suggested = math.ceil(min_tiles * 1.1)
157
+ return {
158
+ "minimum_tiles": min_tiles,
159
+ "suggested_tiles": suggested,
160
+ "estimated_cost_range": [round(area * 3, 2), round(area * 10, 2)]
161
+ }
162
+
163
+ def validate_positive_number(value, field):
164
+ if not isinstance(value, (int, float)) or value <= 0:
165
+ raise ValueError(f"{field} must be a positive number")
166
+
167
+ if __name__ == '__main__':
168
+ app.run(host="0.0.0.0", port=5000, debug=True)