Create index.html
Browse files- index.html +168 -0
index.html
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify, send_file
|
2 |
+
from flask_cors import CORS
|
3 |
+
import joblib
|
4 |
+
import xgboost as xgb
|
5 |
+
import numpy as np
|
6 |
+
import json
|
7 |
+
import math
|
8 |
+
import os
|
9 |
+
import logging
|
10 |
+
|
11 |
+
app = Flask(__name__)
|
12 |
+
CORS(app)
|
13 |
+
logging.basicConfig(level=logging.INFO)
|
14 |
+
|
15 |
+
# Load models
|
16 |
+
try:
|
17 |
+
rf = joblib.load("rf_model.pkl")
|
18 |
+
xgb_model = xgb.Booster()
|
19 |
+
xgb_model.load_model("xgb_model.json")
|
20 |
+
app.logger.info("✅ Models loaded successfully.")
|
21 |
+
except Exception as e:
|
22 |
+
app.logger.error(f"❌ Error loading models: {e}")
|
23 |
+
raise e
|
24 |
+
|
25 |
+
# Load tile metadata
|
26 |
+
with open("tile_catalog.json", "r", encoding="utf-8") as f:
|
27 |
+
tile_catalog = json.load(f)
|
28 |
+
|
29 |
+
with open("tile_sizes.json", "r", encoding="utf-8") as f:
|
30 |
+
tile_sizes = json.load(f)
|
31 |
+
|
32 |
+
@app.route("/")
|
33 |
+
def home():
|
34 |
+
return send_file("index.html")
|
35 |
+
|
36 |
+
@app.route('/recommend', methods=['POST'])
|
37 |
+
def recommend():
|
38 |
+
try:
|
39 |
+
data = request.get_json()
|
40 |
+
|
41 |
+
required = ['tile_type', 'coverage', 'area', 'price_range']
|
42 |
+
if not all(k in data for k in required):
|
43 |
+
return jsonify({"error": "Missing required fields"}), 400
|
44 |
+
|
45 |
+
tile_type = data['tile_type'].lower()
|
46 |
+
if tile_type not in ['floor', 'wall']:
|
47 |
+
return jsonify({"error": "Invalid tile type"}), 400
|
48 |
+
|
49 |
+
validate_positive_number(data['coverage'], "coverage")
|
50 |
+
validate_positive_number(data['area'], "area")
|
51 |
+
|
52 |
+
pr = data['price_range']
|
53 |
+
if (not isinstance(pr, list) or len(pr) != 2 or pr[0] < 0 or pr[1] <= 0 or pr[0] >= pr[1]):
|
54 |
+
return jsonify({"error": "Invalid price range"}), 400
|
55 |
+
|
56 |
+
features = prepare_features(data)
|
57 |
+
xgb_pred = float(xgb_model.predict(xgb.DMatrix(features))[0])
|
58 |
+
rf_pred = float(rf.predict_proba(features)[0][1])
|
59 |
+
combined_score = (xgb_pred + rf_pred) / 2
|
60 |
+
|
61 |
+
recommended = filter_products(
|
62 |
+
tile_type=tile_type,
|
63 |
+
min_price=pr[0],
|
64 |
+
max_price=pr[1],
|
65 |
+
preferred_sizes=data.get("preferred_sizes", []),
|
66 |
+
min_score=0.5
|
67 |
+
)
|
68 |
+
|
69 |
+
return jsonify({
|
70 |
+
"recommendation_score": round(combined_score, 3),
|
71 |
+
"total_matches": len(recommended),
|
72 |
+
"recommended_products": recommended[:5],
|
73 |
+
"calculation": calculate_requirements(data['area'], data['coverage'])
|
74 |
+
})
|
75 |
+
|
76 |
+
except Exception as e:
|
77 |
+
app.logger.error(f"Error in /recommend: {e}")
|
78 |
+
return jsonify({"error": "Internal server error"}), 500
|
79 |
+
|
80 |
+
@app.route('/calculate', methods=['POST'])
|
81 |
+
def calculate():
|
82 |
+
try:
|
83 |
+
data = request.get_json()
|
84 |
+
|
85 |
+
for k in ['tile_type', 'area', 'tile_size']:
|
86 |
+
if k not in data:
|
87 |
+
return jsonify({"error": f"Missing field: {k}"}), 400
|
88 |
+
|
89 |
+
tile_type = data['tile_type'].lower()
|
90 |
+
if tile_type not in ['floor', 'wall']:
|
91 |
+
return jsonify({"error": "Invalid tile type"}), 400
|
92 |
+
|
93 |
+
tile_size_key = data['tile_size']
|
94 |
+
if tile_size_key not in tile_sizes:
|
95 |
+
return jsonify({"error": "Invalid tile size"}), 400
|
96 |
+
|
97 |
+
validate_positive_number(data['area'], "area")
|
98 |
+
|
99 |
+
tile_info = tile_sizes[tile_size_key]
|
100 |
+
area_per_tile = tile_info['length'] * tile_info['width']
|
101 |
+
tiles_needed = math.ceil((data['area'] / area_per_tile) * 1.1)
|
102 |
+
tiles_per_box = tile_info.get('tiles_per_box', 10)
|
103 |
+
boxes_needed = math.ceil(tiles_needed / tiles_per_box)
|
104 |
+
|
105 |
+
matching = [
|
106 |
+
p for p in tile_catalog
|
107 |
+
if p['type'].lower() == tile_type and p['size'] == tile_size_key
|
108 |
+
]
|
109 |
+
|
110 |
+
return jsonify({
|
111 |
+
"tile_type": tile_type,
|
112 |
+
"area": data['area'],
|
113 |
+
"tile_size": tile_size_key,
|
114 |
+
"tiles_needed": tiles_needed,
|
115 |
+
"boxes_needed": boxes_needed,
|
116 |
+
"matching_products": matching[:3],
|
117 |
+
"total_matches": len(matching)
|
118 |
+
})
|
119 |
+
|
120 |
+
except Exception as e:
|
121 |
+
app.logger.error(f"Error in /calculate: {e}")
|
122 |
+
return jsonify({"error": "Internal server error"}), 500
|
123 |
+
|
124 |
+
def prepare_features(data):
|
125 |
+
tile_type_num = 0 if data['tile_type'] == 'floor' else 1
|
126 |
+
price_per_sqft = data['price_range'][1] / data['coverage']
|
127 |
+
budget_efficiency = data['coverage'] / data['price_range'][1]
|
128 |
+
|
129 |
+
return np.array([[
|
130 |
+
tile_type_num,
|
131 |
+
data['area'],
|
132 |
+
data['coverage'],
|
133 |
+
data['price_range'][0],
|
134 |
+
data['price_range'][1],
|
135 |
+
price_per_sqft,
|
136 |
+
budget_efficiency
|
137 |
+
]])
|
138 |
+
|
139 |
+
def filter_products(tile_type, min_price, max_price, preferred_sizes, min_score=0.5):
|
140 |
+
results = []
|
141 |
+
for p in tile_catalog:
|
142 |
+
if (
|
143 |
+
p['type'].lower() == tile_type and
|
144 |
+
min_price <= p['price'] <= max_price and
|
145 |
+
(not preferred_sizes or p['size'] in preferred_sizes)
|
146 |
+
):
|
147 |
+
price_score = 1 - ((p['price'] - min_price) / (max_price - min_price + 1e-6))
|
148 |
+
size_score = 1 if not preferred_sizes or p['size'] in preferred_sizes else 0.5
|
149 |
+
score = (price_score + size_score) / 2
|
150 |
+
if score >= min_score:
|
151 |
+
results.append({**p, "recommendation_score": round(score, 2)})
|
152 |
+
return sorted(results, key=lambda x: x['recommendation_score'], reverse=True)
|
153 |
+
|
154 |
+
def calculate_requirements(area, coverage):
|
155 |
+
min_tiles = math.ceil(area / coverage)
|
156 |
+
suggested = math.ceil(min_tiles * 1.1)
|
157 |
+
return {
|
158 |
+
"minimum_tiles": min_tiles,
|
159 |
+
"suggested_tiles": suggested,
|
160 |
+
"estimated_cost_range": [round(area * 3, 2), round(area * 10, 2)]
|
161 |
+
}
|
162 |
+
|
163 |
+
def validate_positive_number(value, field):
|
164 |
+
if not isinstance(value, (int, float)) or value <= 0:
|
165 |
+
raise ValueError(f"{field} must be a positive number")
|
166 |
+
|
167 |
+
if __name__ == '__main__':
|
168 |
+
app.run(host="0.0.0.0", port=5000, debug=True)
|