Update app.py
Browse files
app.py
CHANGED
@@ -4,108 +4,178 @@ import joblib
|
|
4 |
import numpy as np
|
5 |
import json
|
6 |
import math
|
7 |
-
import xgboost as xgb
|
8 |
import os
|
|
|
|
|
9 |
|
10 |
-
app = Flask(__name__, static_folder=
|
11 |
CORS(app)
|
12 |
|
13 |
-
#
|
|
|
|
|
|
|
14 |
try:
|
15 |
rf = joblib.load("rf_model.pkl")
|
16 |
xgb_model = xgb.Booster()
|
17 |
xgb_model.load_model("xgb_model.json")
|
18 |
-
|
19 |
except Exception as e:
|
20 |
-
|
21 |
raise e
|
22 |
|
23 |
# Load tile data
|
24 |
with open("tile_catalog.json", "r", encoding="utf-8") as f:
|
25 |
tile_catalog = json.load(f)
|
|
|
26 |
with open("tile_sizes.json", "r", encoding="utf-8") as f:
|
27 |
tile_sizes = json.load(f)
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
32 |
|
33 |
-
|
|
|
34 |
def recommend():
|
35 |
try:
|
36 |
data = request.get_json()
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
44 |
xgb_pred = xgb_model.predict(xgb.DMatrix(features))[0]
|
45 |
rf_pred = rf.predict_proba(features)[0][1]
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
products = filter_products(tile_type, price_range, preferred_sizes)
|
49 |
-
return jsonify({
|
50 |
-
"recommendation_score": round(float(score), 3),
|
51 |
-
"recommended_products": products[:4],
|
52 |
-
"total_matches": len(products),
|
53 |
-
})
|
54 |
except Exception as e:
|
55 |
-
|
56 |
-
return jsonify({"error": "
|
57 |
|
58 |
-
|
|
|
59 |
def calculate():
|
60 |
try:
|
61 |
data = request.get_json()
|
62 |
-
tile_type
|
63 |
-
|
64 |
-
tile_size = data.get("tile_size", "")
|
65 |
|
66 |
-
|
|
|
|
|
|
|
|
|
67 |
return jsonify({"error": "Invalid tile size"}), 400
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
73 |
|
74 |
-
|
|
|
|
|
|
|
75 |
|
76 |
return jsonify({
|
|
|
|
|
|
|
77 |
"tiles_needed": tiles_needed,
|
78 |
-
"boxes_needed":
|
79 |
-
"matching_products":
|
80 |
-
"total_matches": len(
|
81 |
})
|
|
|
82 |
except Exception as e:
|
83 |
-
|
84 |
-
return jsonify({"error": "
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
filtered = []
|
96 |
for product in tile_catalog:
|
97 |
-
if product[
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import numpy as np
|
5 |
import json
|
6 |
import math
|
|
|
7 |
import os
|
8 |
+
import xgboost as xgb
|
9 |
+
import logging
|
10 |
|
11 |
+
app = Flask(__name__, static_folder=".", static_url_path="")
|
12 |
CORS(app)
|
13 |
|
14 |
+
# Setup logging
|
15 |
+
logging.basicConfig(level=logging.INFO)
|
16 |
+
|
17 |
+
# Load models
|
18 |
try:
|
19 |
rf = joblib.load("rf_model.pkl")
|
20 |
xgb_model = xgb.Booster()
|
21 |
xgb_model.load_model("xgb_model.json")
|
22 |
+
app.logger.info("β
Models loaded successfully.")
|
23 |
except Exception as e:
|
24 |
+
app.logger.error(f"β Error loading models: {e}")
|
25 |
raise e
|
26 |
|
27 |
# Load tile data
|
28 |
with open("tile_catalog.json", "r", encoding="utf-8") as f:
|
29 |
tile_catalog = json.load(f)
|
30 |
+
|
31 |
with open("tile_sizes.json", "r", encoding="utf-8") as f:
|
32 |
tile_sizes = json.load(f)
|
33 |
|
34 |
+
# Serve the frontend
|
35 |
+
@app.route('/')
|
36 |
+
def serve_index():
|
37 |
+
return send_from_directory('.', 'index.html')
|
38 |
|
39 |
+
# Product recommendation endpoint
|
40 |
+
@app.route('/recommend', methods=['POST'])
|
41 |
def recommend():
|
42 |
try:
|
43 |
data = request.get_json()
|
44 |
+
required_fields = ['tile_type', 'coverage', 'area', 'price_range']
|
45 |
+
if not all(field in data for field in required_fields):
|
46 |
+
return jsonify({"error": "Missing required fields"}), 400
|
47 |
+
|
48 |
+
tile_type = data['tile_type'].lower()
|
49 |
+
if tile_type not in ['floor', 'wall']:
|
50 |
+
return jsonify({"error": "Invalid tile type"}), 400
|
51 |
+
|
52 |
+
validate_positive_number(data['coverage'], "coverage")
|
53 |
+
validate_positive_number(data['area'], "area")
|
54 |
|
55 |
+
if (not isinstance(data['price_range'], list) or len(data['price_range']) != 2 or
|
56 |
+
data['price_range'][0] < 0 or data['price_range'][1] <= 0 or
|
57 |
+
data['price_range'][0] >= data['price_range'][1]):
|
58 |
+
return jsonify({"error": "Invalid price range"}), 400
|
59 |
+
|
60 |
+
features = prepare_features(data)
|
61 |
xgb_pred = xgb_model.predict(xgb.DMatrix(features))[0]
|
62 |
rf_pred = rf.predict_proba(features)[0][1]
|
63 |
+
combined_score = (xgb_pred + rf_pred) / 2
|
64 |
+
|
65 |
+
recommended_products = filter_products(
|
66 |
+
tile_type=tile_type,
|
67 |
+
min_price=data['price_range'][0],
|
68 |
+
max_price=data['price_range'][1],
|
69 |
+
preferred_sizes=data.get('preferred_sizes', []),
|
70 |
+
min_score=0.5
|
71 |
+
)
|
72 |
+
|
73 |
+
response = {
|
74 |
+
"recommendation_score": round(float(combined_score), 3),
|
75 |
+
"total_matches": len(recommended_products),
|
76 |
+
"recommended_products": recommended_products[:5],
|
77 |
+
"calculation": calculate_requirements(data['area'], data['coverage'])
|
78 |
+
}
|
79 |
+
return jsonify(response)
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
except Exception as e:
|
82 |
+
app.logger.error(f"Error in /recommend: {str(e)}")
|
83 |
+
return jsonify({"error": "Internal server error"}), 500
|
84 |
|
85 |
+
# Tile calculation endpoint
|
86 |
+
@app.route('/calculate', methods=['POST'])
|
87 |
def calculate():
|
88 |
try:
|
89 |
data = request.get_json()
|
90 |
+
if 'tile_type' not in data or 'area' not in data or 'tile_size' not in data:
|
91 |
+
return jsonify({"error": "Missing required fields"}), 400
|
|
|
92 |
|
93 |
+
tile_type = data['tile_type'].lower()
|
94 |
+
if tile_type not in ['floor', 'wall']:
|
95 |
+
return jsonify({"error": "Invalid tile type"}), 400
|
96 |
+
|
97 |
+
if data['tile_size'] not in tile_sizes:
|
98 |
return jsonify({"error": "Invalid tile size"}), 400
|
99 |
|
100 |
+
validate_positive_number(data['area'], "area")
|
101 |
+
|
102 |
+
tile_info = tile_sizes[data['tile_size']]
|
103 |
+
area_per_tile = tile_info['length'] * tile_info['width']
|
104 |
+
tiles_needed = math.ceil((data['area'] / area_per_tile) * 1.1)
|
105 |
+
tiles_per_box = tile_info.get('tiles_per_box', 10)
|
106 |
+
boxes_needed = math.ceil(tiles_needed / tiles_per_box)
|
107 |
|
108 |
+
matching_products = [
|
109 |
+
p for p in tile_catalog
|
110 |
+
if p['type'].lower() == tile_type and p['size'] == data['tile_size']
|
111 |
+
]
|
112 |
|
113 |
return jsonify({
|
114 |
+
"tile_type": tile_type,
|
115 |
+
"area": data['area'],
|
116 |
+
"tile_size": data['tile_size'],
|
117 |
"tiles_needed": tiles_needed,
|
118 |
+
"boxes_needed": boxes_needed,
|
119 |
+
"matching_products": matching_products[:3],
|
120 |
+
"total_matches": len(matching_products)
|
121 |
})
|
122 |
+
|
123 |
except Exception as e:
|
124 |
+
app.logger.error(f"Error in /calculate: {str(e)}")
|
125 |
+
return jsonify({"error": "Internal server error"}), 500
|
126 |
+
|
127 |
+
# === Utility Functions ===
|
128 |
+
|
129 |
+
def prepare_features(data):
|
130 |
+
tile_type_num = 0 if data['tile_type'] == 'floor' else 1
|
131 |
+
price_per_sqft = data['price_range'][1] / data['coverage']
|
132 |
+
budget_efficiency = data['coverage'] / data['price_range'][1]
|
133 |
+
|
134 |
+
return np.array([[
|
135 |
+
tile_type_num,
|
136 |
+
data['area'],
|
137 |
+
data['coverage'],
|
138 |
+
data['price_range'][0],
|
139 |
+
data['price_range'][1],
|
140 |
+
price_per_sqft,
|
141 |
+
budget_efficiency
|
142 |
+
]])
|
143 |
+
|
144 |
+
def filter_products(tile_type, min_price, max_price, preferred_sizes, min_score=0.5):
|
145 |
filtered = []
|
146 |
for product in tile_catalog:
|
147 |
+
if (product['type'].lower() == tile_type and
|
148 |
+
min_price <= product['price'] <= max_price and
|
149 |
+
(not preferred_sizes or product['size'] in preferred_sizes)):
|
150 |
+
|
151 |
+
price_score = 1 - ((product['price'] - min_price) / (max_price - min_price + 1e-6))
|
152 |
+
size_score = 1 if not preferred_sizes or product['size'] in preferred_sizes else 0.5
|
153 |
+
product_score = (price_score + size_score) / 2
|
154 |
+
|
155 |
+
if product_score >= min_score:
|
156 |
+
filtered.append({
|
157 |
+
**product,
|
158 |
+
"recommendation_score": round(product_score, 2)
|
159 |
+
})
|
160 |
+
|
161 |
+
return sorted(filtered, key=lambda x: x['recommendation_score'], reverse=True)
|
162 |
+
|
163 |
+
def calculate_requirements(area, coverage):
|
164 |
+
min_tiles = math.ceil(area / coverage)
|
165 |
+
suggested_tiles = math.ceil(min_tiles * 1.1)
|
166 |
+
return {
|
167 |
+
"minimum_tiles": min_tiles,
|
168 |
+
"suggested_tiles": suggested_tiles,
|
169 |
+
"estimated_cost_range": [
|
170 |
+
round(area * 3, 2),
|
171 |
+
round(area * 10, 2)
|
172 |
+
]
|
173 |
+
}
|
174 |
+
|
175 |
+
def validate_positive_number(value, field):
|
176 |
+
if not isinstance(value, (int, float)) or value <= 0:
|
177 |
+
raise ValueError(f"{field} must be a positive number")
|
178 |
+
|
179 |
+
# Run app
|
180 |
+
if __name__ == '__main__':
|
181 |
+
app.run(host='0.0.0.0', port=7860, debug=False)
|