Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ import numpy as np
|
|
5 |
import json
|
6 |
import math
|
7 |
import xgboost as xgb
|
8 |
-
import
|
9 |
|
10 |
app = Flask(__name__, static_folder='.', static_url_path='/')
|
11 |
CORS(app)
|
@@ -20,11 +20,9 @@ except Exception as e:
|
|
20 |
print(f"❌ Error loading models: {e}")
|
21 |
raise e
|
22 |
|
23 |
-
# Load tile
|
24 |
with open("tile_catalog.json", "r", encoding="utf-8") as f:
|
25 |
tile_catalog = json.load(f)
|
26 |
-
with open("tile_sizes.json", "r", encoding="utf-8") as f:
|
27 |
-
tile_sizes = json.load(f)
|
28 |
|
29 |
@app.route("/")
|
30 |
def index():
|
@@ -34,14 +32,14 @@ def index():
|
|
34 |
def recommend():
|
35 |
try:
|
36 |
data = request.get_json()
|
37 |
-
tile_type = data.get("tile_type", "").lower()
|
38 |
coverage = float(data.get("coverage", 1))
|
39 |
area = float(data.get("area", 1))
|
40 |
price_range = data.get("price_range", [1, 100])
|
41 |
preferred_sizes = data.get("preferred_sizes", [])
|
42 |
|
43 |
-
if
|
44 |
-
return jsonify({"error": "Please enter valid
|
45 |
|
46 |
features = prepare_features(tile_type, coverage, area, price_range)
|
47 |
xgb_pred = xgb_model.predict(xgb.DMatrix(features))[0]
|
@@ -64,27 +62,37 @@ def calculate():
|
|
64 |
data = request.get_json()
|
65 |
tile_type = data.get("tile_type", "").strip().lower()
|
66 |
area = float(data.get("area", 0))
|
67 |
-
|
68 |
|
69 |
if not tile_type:
|
70 |
-
return jsonify({"error": "Please select a tile type (e.g.,
|
71 |
if area <= 0:
|
72 |
-
return jsonify({"error": "Area must be
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
return jsonify({"error": f"Tile size '{tile_size}' has invalid area data."}), 400
|
81 |
|
82 |
-
|
83 |
-
|
|
|
84 |
|
85 |
-
|
|
|
|
|
|
|
|
|
86 |
|
87 |
return jsonify({
|
|
|
|
|
|
|
88 |
"tiles_needed": tiles_needed,
|
89 |
"boxes_needed": boxes,
|
90 |
"matching_products": matches[:3],
|
@@ -92,7 +100,7 @@ def calculate():
|
|
92 |
})
|
93 |
except Exception as e:
|
94 |
print("❌ Error in /calculate:", str(e))
|
95 |
-
return jsonify({"error": "
|
96 |
|
97 |
def prepare_features(tile_type, coverage, area, price_range):
|
98 |
tile_type_num = 0 if tile_type == "floor" else 1
|
@@ -111,7 +119,6 @@ def filter_products(tile_type, price_range, preferred_sizes):
|
|
111 |
continue
|
112 |
if preferred_sizes and product["size"] not in preferred_sizes:
|
113 |
continue
|
114 |
-
|
115 |
price_score = 1 - (product["price"] - min_price) / (max_price - min_price + 1e-6)
|
116 |
size_score = 1 if product["size"] in preferred_sizes else 0.5
|
117 |
score = round((price_score + size_score) / 2, 2)
|
|
|
5 |
import json
|
6 |
import math
|
7 |
import xgboost as xgb
|
8 |
+
import re
|
9 |
|
10 |
app = Flask(__name__, static_folder='.', static_url_path='/')
|
11 |
CORS(app)
|
|
|
20 |
print(f"❌ Error loading models: {e}")
|
21 |
raise e
|
22 |
|
23 |
+
# Load tile catalog
|
24 |
with open("tile_catalog.json", "r", encoding="utf-8") as f:
|
25 |
tile_catalog = json.load(f)
|
|
|
|
|
26 |
|
27 |
@app.route("/")
|
28 |
def index():
|
|
|
32 |
def recommend():
|
33 |
try:
|
34 |
data = request.get_json()
|
35 |
+
tile_type = data.get("tile_type", "").strip().lower()
|
36 |
coverage = float(data.get("coverage", 1))
|
37 |
area = float(data.get("area", 1))
|
38 |
price_range = data.get("price_range", [1, 100])
|
39 |
preferred_sizes = data.get("preferred_sizes", [])
|
40 |
|
41 |
+
if area <= 0 or coverage <= 0:
|
42 |
+
return jsonify({"error": "Please enter valid area and coverage values."}), 400
|
43 |
|
44 |
features = prepare_features(tile_type, coverage, area, price_range)
|
45 |
xgb_pred = xgb_model.predict(xgb.DMatrix(features))[0]
|
|
|
62 |
data = request.get_json()
|
63 |
tile_type = data.get("tile_type", "").strip().lower()
|
64 |
area = float(data.get("area", 0))
|
65 |
+
tile_size_raw = data.get("tile_size", "").strip()
|
66 |
|
67 |
if not tile_type:
|
68 |
+
return jsonify({"error": "Please select a tile type (e.g., floor, wall)."}), 400
|
69 |
if area <= 0:
|
70 |
+
return jsonify({"error": "Area must be greater than 0."}), 400
|
71 |
+
|
72 |
+
# Extract tile length and width in feet using regex
|
73 |
+
match = re.match(r"(\d+(\.\d+)?)\s*(ft|feet)?\s*[xX×*]\s*(\d+(\.\d+)?)\s*(ft|feet)?", tile_size_raw)
|
74 |
+
if not match:
|
75 |
+
return jsonify({"error": f"Invalid tile size format: '{tile_size_raw}'. Please enter like '2 x 2 ft'."}), 400
|
76 |
|
77 |
+
length_ft = float(match.group(1))
|
78 |
+
width_ft = float(match.group(4))
|
79 |
+
if length_ft <= 0 or width_ft <= 0:
|
80 |
+
return jsonify({"error": "Tile dimensions must be greater than 0."}), 400
|
|
|
81 |
|
82 |
+
tile_area = length_ft * width_ft # in sq.ft
|
83 |
+
tiles_needed = math.ceil((area / tile_area) * 1.1) # +10% buffer
|
84 |
+
boxes = math.ceil(tiles_needed / 10) # assuming 10 tiles per box
|
85 |
|
86 |
+
# Filter matching products by type and approximate size
|
87 |
+
matches = [
|
88 |
+
p for p in tile_catalog
|
89 |
+
if p["type"].lower() == tile_type
|
90 |
+
]
|
91 |
|
92 |
return jsonify({
|
93 |
+
"tile_type": tile_type,
|
94 |
+
"area_sqft": area,
|
95 |
+
"tile_size": f"{length_ft:.2f} ft x {width_ft:.2f} ft",
|
96 |
"tiles_needed": tiles_needed,
|
97 |
"boxes_needed": boxes,
|
98 |
"matching_products": matches[:3],
|
|
|
100 |
})
|
101 |
except Exception as e:
|
102 |
print("❌ Error in /calculate:", str(e))
|
103 |
+
return jsonify({"error": "An error occurred. Please check your input values."}), 500
|
104 |
|
105 |
def prepare_features(tile_type, coverage, area, price_range):
|
106 |
tile_type_num = 0 if tile_type == "floor" else 1
|
|
|
119 |
continue
|
120 |
if preferred_sizes and product["size"] not in preferred_sizes:
|
121 |
continue
|
|
|
122 |
price_score = 1 - (product["price"] - min_price) / (max_price - min_price + 1e-6)
|
123 |
size_score = 1 if product["size"] in preferred_sizes else 0.5
|
124 |
score = round((price_score + size_score) / 2, 2)
|