File size: 6,677 Bytes
a1626c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import gradio as gr
import joblib
import numpy as np
import json
import math
import re
from fpdf import FPDF
import tempfile
from deep_translator import GoogleTranslator
import warnings
warnings.filterwarnings("ignore")

# Load models
xgb = joblib.load("xgb_model.pkl")
rf = joblib.load("rf_model.pkl")

# Load catalog and sizes
with open("tile_catalog.json", "r", encoding="utf-8") as f:
    tile_catalog = json.load(f)

with open("tile_sizes.json", "r", encoding="utf-8") as f:
    tile_sizes = json.load(f)

tile_size_map = {s["label"].lower().replace(" ", ""): s["area_sqft"] for s in tile_sizes}

def translate(text, lang="en"):
    try:
        return GoogleTranslator(source="auto", target=lang).translate(text)
    except:
        return text

def remove_emojis(text):
    return re.sub(r'[^\x00-\x7F]+', '', text)

def create_pdf(text):
    pdf = FPDF()
    pdf.add_page()
    pdf.add_font("FreeSans", "", "FreeSans.ttf", uni=True)
    pdf.set_font("FreeSans", size=12)
    pdf.cell(0, 10, "Tile Estimate Report", ln=True, align="C")
    pdf.ln(5)
    for line in text.strip().split("\n"):
        pdf.multi_cell(0, 10, remove_emojis(line))
    tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
    pdf.output(tmp.name)
    return tmp.name

def extract_tile_area(msg, unit):
    msg = msg.lower().replace("×", "x").replace("into", "x").replace("*", "x")
    msg = msg.replace("mm", "").replace("ft", "").replace("feet", "").strip()
    if "x" in msg:
        parts = msg.split("x")
        if len(parts) == 2:
            try:
                val1 = float(re.sub(r"[^\d.]", "", parts[0]))
                val2 = float(re.sub(r"[^\d.]", "", parts[1]))
                if unit == "mm":
                    sqft = (val1 * val2) / 92903.04
                else:
                    sqft = val1 * val2
                return round(sqft, 2)
            except:
                return None
    return None

def chat_fn(message, history, user_state={}):
    # Reset state if user types Floor or Wall
    if message.strip().lower() in ["floor", "wall"]:
        user_state.clear()

    # Language detection
    if "lang" not in user_state:
        try:
            user_state["lang"] = GoogleTranslator(source="auto", target="en").detect(message)
        except:
            user_state["lang"] = "en"
    lang = user_state["lang"]
    def reply(text): return translate(text, lang)

    # Handle PDF command
    if message.strip().lower() in ["pdf", "report", "download"]:
        if "summary" in user_state:
            pdf_path = create_pdf(user_state["summary"])
            return reply("Here’s your PDF report 📄"), [pdf_path], user_state
        else:
            return reply("No estimate yet. Please start by typing 'Floor' or 'Wall'."), None, user_state

    # Start flow
    if "step" not in user_state:
        if message.lower() in ["floor", "wall"]:
            user_state["tile_type"] = message.capitalize()
            user_state["step"] = "get_area"
            return reply(f"Great! You chose {user_state['tile_type']} tiles.\nWhat’s the total area to cover (in sq.ft)?"), None, user_state
        return reply("Hi there! Are you planning for Floor or Wall tiles?"), None, user_state

    if user_state["step"] == "get_area":
        try:
            user_state["area"] = float(message)
            user_state["step"] = "get_unit"
            return reply("Would you like to enter the tile size in mm or ft?"), None, user_state
        except:
            return reply("That doesn't look like a number. Please enter the area in sq.ft (e.g. 120)."), None, user_state

    if user_state["step"] == "get_unit":
        if message.lower() not in ["mm", "ft"]:
            return reply("Please type either mm or ft to choose your preferred unit."), None, user_state
        user_state["unit"] = message.lower()
        user_state["step"] = "get_tile_size"
        unit_label = "mm" if user_state["unit"] == "mm" else "feet"
        return reply(f"Please enter the tile size in {unit_label} (e.g. 600 x 600):"), None, user_state

    if user_state["step"] == "get_tile_size":
        area = extract_tile_area(message, user_state["unit"])
        if area is None:
            return reply("I couldn’t understand that size. Try something like 600 x 600 or 2 x 2."), None, user_state

        user_state["tile_area"] = area
        user_state["step"] = "done"

        area_needed = user_state["area"]
        tile_type = user_state["tile_type"]
        tile_needed = math.ceil((area_needed / area) * 1.1)

        best = []
        for tile in tile_catalog:
            if tile["type"].lower() == tile_type.lower():
                per_box = tile["coverage"] / area
                if per_box > 0:
                    boxes = math.ceil(tile_needed / per_box)
                    total = boxes * tile["price"]
                    best.append({
                        "name": tile["name"],
                        "size": tile["size"],
                        "price": tile["price"],
                        "boxes": boxes,
                        "total": total,
                        "url": tile["url"]
                    })

        best.sort(key=lambda x: x["total"])
        top3 = best[:3]

        summary = f"""
🧱 Tile Type: {tile_type}
📐 Area to Cover: {area_needed} sq.ft
🧮 Tile Size Area: {round(area, 2)} sq.ft
🔢 Estimated Tiles Needed: {tile_needed} (with 10% buffer)

🎯 Suggested Products:
"""
        for i, t in enumerate(top3, 1):
            summary += f"\n{i}. {t['name']} ({t['size']})\n   ₹{t['price']} per box → ~{t['boxes']} boxes\n   {t['url']}\n"

        summary += "\nYou can type 'pdf' to download the report, or start fresh with 'Floor' or 'Wall'."

        user_state["summary"] = summary
        pdf_path = create_pdf(summary)
        return reply(summary), [pdf_path], user_state

    return reply("Type 'Floor' or 'Wall' to begin a new estimate."), None, user_state

# Launch with clean intro
with gr.Blocks() as demo:
    chatbot = gr.ChatInterface(
        fn=chat_fn,
        title="🧱 TileBot – Your Tile Estimation Assistant",
        description=(
            "🧱 TileBot is here to help you estimate tiles for your space.\n\n"
            "Start by telling me if you're working on a Floor or Wall. Then share your room size and tile size in mm or feet — "
            "I'll do the rest.\n\n"
            "I’ll calculate how many tiles you need, recommend suitable products, and give you a PDF report.\n\n"
            "Type 'Floor' or 'Wall' to begin!"
        ),
        type="messages",
        additional_outputs=[gr.File(label="📄 Download Report")]
    )

demo.launch()