File size: 6,030 Bytes
fc55797
a1626c0
fc55797
a1626c0
 
4ca754d
fc55797
a1626c0
1e74a1e
50460db
b627340
389dccc
f5f9a76
a1626c0
 
 
 
 
 
fc55797
 
 
 
 
 
 
 
 
 
 
 
 
a1626c0
fc55797
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ca754d
fc55797
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from flask import Flask, request, jsonify
import joblib
import numpy as np
import json
import math

app = Flask(_name_)

# Load models
xgb = joblib.load("xgb_model.pkl")
rf = joblib.load("rf_model.pkl")

# Load tile catalog and sizes
with open("tile_catalog.json", "r", encoding="utf-8") as f:
    tile_catalog = json.load(f)

with open("tile_sizes.json", "r", encoding="utf-8") as f:
    tile_sizes = json.load(f)

@app.route('/recommend', methods=['POST'])
def recommend():
    """
    Endpoint for product recommendations
    Expected JSON payload:
    {
        "tile_type": "floor"|"wall",
        "coverage": float,
        "area": float,
        "price_range": [min, max],
        "preferred_sizes": [size1, size2] (optional)
    }
    """
    try:
        data = request.get_json()
        
        # Validate input
        required_fields = ['tile_type', 'coverage', 'area', 'price_range']
        if not all(field in data for field in required_fields):
            return jsonify({"error": "Missing required fields"}), 400
        
        tile_type = data['tile_type'].lower()
        if tile_type not in ['floor', 'wall']:
            return jsonify({"error": "Invalid tile type. Use 'floor' or 'wall'"}), 400
        
        # Feature engineering for ML prediction
        features = prepare_features(data)
        
        # Get predictions from both models
        xgb_pred = xgb.predict_proba(features)[0][1]
        rf_pred = rf.predict_proba(features)[0][1]
        combined_score = (xgb_pred + rf_pred) / 2
        
        # Filter products based on criteria
        recommended_products = filter_products(
            tile_type=tile_type,
            min_price=data['price_range'][0],
            max_price=data['price_range'][1],
            preferred_sizes=data.get('preferred_sizes', []),
            min_score=0.5  # Threshold for recommendation
        )
        
        # Prepare response
        response = {
            "recommendation_score": round(float(combined_score), 3),
            "recommended_products": recommended_products[:5],  # Return top 5
            "calculation": calculate_requirements(data['area'], data['coverage'])
        }
        
        return jsonify(response)
    
    except Exception as e:
        return jsonify({"error": str(e)}), 500

@app.route('/calculate', methods=['POST'])
def calculate():
    """
    Endpoint for tile calculation
    Expected JSON payload:
    {
        "tile_type": "floor"|"wall",
        "area": float,
        "tile_size": "12x12"|etc (from tile_sizes.json)
    }
    """
    try:
        data = request.get_json()
        
        # Validate input
        if 'tile_type' not in data or 'area' not in data or 'tile_size' not in data:
            return jsonify({"error": "Missing required fields"}), 400
            
        tile_type = data['tile_type'].lower()
        if tile_type not in ['floor', 'wall']:
            return jsonify({"error": "Invalid tile type"}), 400
            
        if data['tile_size'] not in tile_sizes:
            return jsonify({"error": "Invalid tile size"}), 400
            
        # Perform calculation
        tile_info = tile_sizes[data['tile_size']]
        area_per_tile = tile_info['length'] * tile_info['width']
        num_tiles = math.ceil((data['area'] / area_per_tile) * 1.1)  # 10% buffer
        num_boxes = math.ceil(num_tiles / tile_info.get('tiles_per_box', 10))
        
        # Get matching products
        matching_products = [
            p for p in tile_catalog 
            if p['type'].lower() == tile_type and p['size'] == data['tile_size']
        ]
        
        return jsonify({
            "tile_type": tile_type,
            "area": data['area'],
            "tile_size": data['tile_size'],
            "tiles_needed": num_tiles,
            "boxes_needed": num_boxes,
            "matching_products": matching_products[:3]  # Return top 3 matches
        })
        
    except Exception as e:
        return jsonify({"error": str(e)}), 500

def prepare_features(data):
    """Prepare feature vector for ML model prediction"""
    tile_type_num = 0 if data['tile_type'] == 'floor' else 1
    price_per_sqft = data['price_range'][1] / data['coverage']  # Using max price
    budget_efficiency = data['coverage'] / data['price_range'][1]
    
    return np.array([[
        tile_type_num,
        data['area'],
        data['coverage'],
        data['price_range'][0],  # min price
        data['price_range'][1],  # max price
        price_per_sqft,
        budget_efficiency
    ]])

def filter_products(tile_type, min_price, max_price, preferred_sizes, min_score=0.5):
    """Filter products based on criteria"""
    filtered = []
    
    for product in tile_catalog:
        if (product['type'].lower() == tile_type and
            min_price <= product['price'] <= max_price and
            (not preferred_sizes or product['size'] in preferred_sizes)):
            
            # Calculate a simple score (could be enhanced)
            price_score = 1 - ((product['price'] - min_price) / (max_price - min_price))
            size_score = 1 if not preferred_sizes or product['size'] in preferred_sizes else 0.5
            product_score = (price_score + size_score) / 2
            
            if product_score >= min_score:
                filtered.append({
                    **product,
                    "recommendation_score": round(product_score, 2)
                })
    
    # Sort by recommendation score
    return sorted(filtered, key=lambda x: x['recommendation_score'], reverse=True)

def calculate_requirements(area, coverage):
    """Calculate basic requirements"""
    return {
        "minimum_tiles": math.ceil(area / coverage),
        "suggested_tiles": math.ceil((area / coverage) * 1.1),  # 10% buffer
        "estimated_cost_range": [
            round(area * 3, 2),  # $3/sqft (example)
            round(area * 10, 2)   # $10/sqft (example)
        ]
    }

if _name_ == '_main_':
    app.run(host='0.0.0.0', port=5000, debug=True)