Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,29 @@
|
|
1 |
from flask import Flask, request, jsonify
|
|
|
2 |
import joblib
|
3 |
import numpy as np
|
4 |
import json
|
5 |
import math
|
6 |
import xgboost as xgb
|
|
|
7 |
|
8 |
app = Flask(__name__)
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Load models
|
11 |
-
|
12 |
-
|
13 |
-
xgb_model.
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
# Load tile
|
16 |
with open("tile_catalog.json", "r", encoding="utf-8") as f:
|
17 |
tile_catalog = json.load(f)
|
18 |
|
@@ -34,44 +45,50 @@ def recommend():
|
|
34 |
"""
|
35 |
try:
|
36 |
data = request.get_json()
|
37 |
-
|
38 |
-
# Validate input
|
39 |
required_fields = ['tile_type', 'coverage', 'area', 'price_range']
|
40 |
if not all(field in data for field in required_fields):
|
41 |
return jsonify({"error": "Missing required fields"}), 400
|
42 |
-
|
43 |
tile_type = data['tile_type'].lower()
|
44 |
if tile_type not in ['floor', 'wall']:
|
45 |
return jsonify({"error": "Invalid tile type. Use 'floor' or 'wall'"}), 400
|
46 |
-
|
47 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
features = prepare_features(data)
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
rf_pred = rf.predict_proba(features)[0][1] # Random Forest prediction
|
53 |
combined_score = (xgb_pred + rf_pred) / 2
|
54 |
-
|
55 |
-
# Filter products based on criteria
|
56 |
recommended_products = filter_products(
|
57 |
tile_type=tile_type,
|
58 |
min_price=data['price_range'][0],
|
59 |
max_price=data['price_range'][1],
|
60 |
preferred_sizes=data.get('preferred_sizes', []),
|
61 |
-
min_score=0.5
|
62 |
)
|
63 |
-
|
64 |
-
# Prepare response
|
65 |
response = {
|
66 |
"recommendation_score": round(float(combined_score), 3),
|
67 |
-
"
|
|
|
68 |
"calculation": calculate_requirements(data['area'], data['coverage'])
|
69 |
}
|
70 |
-
|
71 |
return jsonify(response)
|
72 |
-
|
73 |
except Exception as e:
|
74 |
-
|
|
|
75 |
|
76 |
@app.route('/calculate', methods=['POST'])
|
77 |
def calculate():
|
@@ -81,96 +98,102 @@ def calculate():
|
|
81 |
{
|
82 |
"tile_type": "floor"|"wall",
|
83 |
"area": float,
|
84 |
-
"tile_size": "12x12"|etc
|
85 |
}
|
86 |
"""
|
87 |
try:
|
88 |
data = request.get_json()
|
89 |
-
|
90 |
-
# Validate input
|
91 |
if 'tile_type' not in data or 'area' not in data or 'tile_size' not in data:
|
92 |
return jsonify({"error": "Missing required fields"}), 400
|
93 |
-
|
94 |
tile_type = data['tile_type'].lower()
|
95 |
if tile_type not in ['floor', 'wall']:
|
96 |
return jsonify({"error": "Invalid tile type"}), 400
|
97 |
-
|
98 |
if data['tile_size'] not in tile_sizes:
|
99 |
return jsonify({"error": "Invalid tile size"}), 400
|
100 |
-
|
101 |
-
|
|
|
102 |
tile_info = tile_sizes[data['tile_size']]
|
103 |
area_per_tile = tile_info['length'] * tile_info['width']
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
matching_products = [
|
109 |
-
p for p in tile_catalog
|
110 |
if p['type'].lower() == tile_type and p['size'] == data['tile_size']
|
111 |
]
|
112 |
-
|
113 |
return jsonify({
|
114 |
"tile_type": tile_type,
|
115 |
"area": data['area'],
|
116 |
"tile_size": data['tile_size'],
|
117 |
-
"tiles_needed":
|
118 |
-
"boxes_needed":
|
119 |
-
"matching_products": matching_products[:3]
|
|
|
120 |
})
|
121 |
-
|
122 |
except Exception as e:
|
123 |
-
|
|
|
124 |
|
125 |
def prepare_features(data):
|
126 |
-
"""Prepare feature vector for ML
|
127 |
tile_type_num = 0 if data['tile_type'] == 'floor' else 1
|
128 |
-
price_per_sqft = data['price_range'][1] / data['coverage']
|
129 |
budget_efficiency = data['coverage'] / data['price_range'][1]
|
130 |
-
|
131 |
return np.array([[
|
132 |
tile_type_num,
|
133 |
data['area'],
|
134 |
data['coverage'],
|
135 |
-
data['price_range'][0],
|
136 |
-
data['price_range'][1],
|
137 |
price_per_sqft,
|
138 |
budget_efficiency
|
139 |
]])
|
140 |
|
141 |
def filter_products(tile_type, min_price, max_price, preferred_sizes, min_score=0.5):
|
142 |
-
"""Filter
|
143 |
filtered = []
|
144 |
-
|
145 |
for product in tile_catalog:
|
146 |
if (product['type'].lower() == tile_type and
|
147 |
min_price <= product['price'] <= max_price and
|
148 |
(not preferred_sizes or product['size'] in preferred_sizes)):
|
149 |
-
|
150 |
-
|
151 |
-
price_score = 1 - ((product['price'] - min_price) / (max_price - min_price))
|
152 |
size_score = 1 if not preferred_sizes or product['size'] in preferred_sizes else 0.5
|
153 |
product_score = (price_score + size_score) / 2
|
154 |
-
|
155 |
if product_score >= min_score:
|
156 |
filtered.append({
|
157 |
**product,
|
158 |
"recommendation_score": round(product_score, 2)
|
159 |
})
|
160 |
-
|
161 |
-
# Sort by recommendation score
|
162 |
return sorted(filtered, key=lambda x: x['recommendation_score'], reverse=True)
|
163 |
|
164 |
def calculate_requirements(area, coverage):
|
165 |
-
"""Calculate
|
|
|
|
|
166 |
return {
|
167 |
-
"minimum_tiles":
|
168 |
-
"suggested_tiles":
|
169 |
"estimated_cost_range": [
|
170 |
-
round(area * 3, 2), #
|
171 |
-
round(area * 10, 2)
|
172 |
]
|
173 |
}
|
174 |
|
|
|
|
|
|
|
|
|
|
|
175 |
if __name__ == '__main__':
|
176 |
app.run(host='0.0.0.0', port=5000, debug=True)
|
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
+
from flask_cors import CORS
|
3 |
import joblib
|
4 |
import numpy as np
|
5 |
import json
|
6 |
import math
|
7 |
import xgboost as xgb
|
8 |
+
import logging
|
9 |
|
10 |
app = Flask(__name__)
|
11 |
+
CORS(app) # Allow cross-origin requests (important for frontend integration)
|
12 |
+
|
13 |
+
# Setup logging
|
14 |
+
logging.basicConfig(level=logging.INFO)
|
15 |
|
16 |
# Load models
|
17 |
+
try:
|
18 |
+
rf = joblib.load("rf_model.pkl")
|
19 |
+
xgb_model = xgb.Booster()
|
20 |
+
xgb_model.load_model("xgb_model.json")
|
21 |
+
app.logger.info("✅ Models loaded successfully.")
|
22 |
+
except Exception as e:
|
23 |
+
app.logger.error(f"❌ Error loading models: {e}")
|
24 |
+
raise e
|
25 |
|
26 |
+
# Load tile data
|
27 |
with open("tile_catalog.json", "r", encoding="utf-8") as f:
|
28 |
tile_catalog = json.load(f)
|
29 |
|
|
|
45 |
"""
|
46 |
try:
|
47 |
data = request.get_json()
|
48 |
+
|
|
|
49 |
required_fields = ['tile_type', 'coverage', 'area', 'price_range']
|
50 |
if not all(field in data for field in required_fields):
|
51 |
return jsonify({"error": "Missing required fields"}), 400
|
52 |
+
|
53 |
tile_type = data['tile_type'].lower()
|
54 |
if tile_type not in ['floor', 'wall']:
|
55 |
return jsonify({"error": "Invalid tile type. Use 'floor' or 'wall'"}), 400
|
56 |
+
|
57 |
+
# Validate numeric inputs
|
58 |
+
validate_positive_number(data['coverage'], "coverage")
|
59 |
+
validate_positive_number(data['area'], "area")
|
60 |
+
if (not isinstance(data['price_range'], list) or
|
61 |
+
len(data['price_range']) != 2 or
|
62 |
+
data['price_range'][0] < 0 or
|
63 |
+
data['price_range'][1] <= 0 or
|
64 |
+
data['price_range'][0] >= data['price_range'][1]):
|
65 |
+
return jsonify({"error": "Invalid price range"}), 400
|
66 |
+
|
67 |
features = prepare_features(data)
|
68 |
+
|
69 |
+
xgb_pred = xgb_model.predict(xgb.DMatrix(features))[0]
|
70 |
+
rf_pred = rf.predict_proba(features)[0][1]
|
|
|
71 |
combined_score = (xgb_pred + rf_pred) / 2
|
72 |
+
|
|
|
73 |
recommended_products = filter_products(
|
74 |
tile_type=tile_type,
|
75 |
min_price=data['price_range'][0],
|
76 |
max_price=data['price_range'][1],
|
77 |
preferred_sizes=data.get('preferred_sizes', []),
|
78 |
+
min_score=0.5
|
79 |
)
|
80 |
+
|
|
|
81 |
response = {
|
82 |
"recommendation_score": round(float(combined_score), 3),
|
83 |
+
"total_matches": len(recommended_products),
|
84 |
+
"recommended_products": recommended_products[:5],
|
85 |
"calculation": calculate_requirements(data['area'], data['coverage'])
|
86 |
}
|
|
|
87 |
return jsonify(response)
|
88 |
+
|
89 |
except Exception as e:
|
90 |
+
app.logger.error(f"Error in /recommend: {str(e)}")
|
91 |
+
return jsonify({"error": "Internal server error"}), 500
|
92 |
|
93 |
@app.route('/calculate', methods=['POST'])
|
94 |
def calculate():
|
|
|
98 |
{
|
99 |
"tile_type": "floor"|"wall",
|
100 |
"area": float,
|
101 |
+
"tile_size": "12x12"|etc
|
102 |
}
|
103 |
"""
|
104 |
try:
|
105 |
data = request.get_json()
|
106 |
+
|
|
|
107 |
if 'tile_type' not in data or 'area' not in data or 'tile_size' not in data:
|
108 |
return jsonify({"error": "Missing required fields"}), 400
|
109 |
+
|
110 |
tile_type = data['tile_type'].lower()
|
111 |
if tile_type not in ['floor', 'wall']:
|
112 |
return jsonify({"error": "Invalid tile type"}), 400
|
113 |
+
|
114 |
if data['tile_size'] not in tile_sizes:
|
115 |
return jsonify({"error": "Invalid tile size"}), 400
|
116 |
+
|
117 |
+
validate_positive_number(data['area'], "area")
|
118 |
+
|
119 |
tile_info = tile_sizes[data['tile_size']]
|
120 |
area_per_tile = tile_info['length'] * tile_info['width']
|
121 |
+
tiles_needed = math.ceil((data['area'] / area_per_tile) * 1.1)
|
122 |
+
tiles_per_box = tile_info.get('tiles_per_box', 10)
|
123 |
+
boxes_needed = math.ceil(tiles_needed / tiles_per_box)
|
124 |
+
|
125 |
matching_products = [
|
126 |
+
p for p in tile_catalog
|
127 |
if p['type'].lower() == tile_type and p['size'] == data['tile_size']
|
128 |
]
|
129 |
+
|
130 |
return jsonify({
|
131 |
"tile_type": tile_type,
|
132 |
"area": data['area'],
|
133 |
"tile_size": data['tile_size'],
|
134 |
+
"tiles_needed": tiles_needed,
|
135 |
+
"boxes_needed": boxes_needed,
|
136 |
+
"matching_products": matching_products[:3],
|
137 |
+
"total_matches": len(matching_products)
|
138 |
})
|
139 |
+
|
140 |
except Exception as e:
|
141 |
+
app.logger.error(f"Error in /calculate: {str(e)}")
|
142 |
+
return jsonify({"error": "Internal server error"}), 500
|
143 |
|
144 |
def prepare_features(data):
|
145 |
+
"""Prepare feature vector for ML prediction"""
|
146 |
tile_type_num = 0 if data['tile_type'] == 'floor' else 1
|
147 |
+
price_per_sqft = data['price_range'][1] / data['coverage']
|
148 |
budget_efficiency = data['coverage'] / data['price_range'][1]
|
149 |
+
|
150 |
return np.array([[
|
151 |
tile_type_num,
|
152 |
data['area'],
|
153 |
data['coverage'],
|
154 |
+
data['price_range'][0],
|
155 |
+
data['price_range'][1],
|
156 |
price_per_sqft,
|
157 |
budget_efficiency
|
158 |
]])
|
159 |
|
160 |
def filter_products(tile_type, min_price, max_price, preferred_sizes, min_score=0.5):
|
161 |
+
"""Filter and score products"""
|
162 |
filtered = []
|
|
|
163 |
for product in tile_catalog:
|
164 |
if (product['type'].lower() == tile_type and
|
165 |
min_price <= product['price'] <= max_price and
|
166 |
(not preferred_sizes or product['size'] in preferred_sizes)):
|
167 |
+
|
168 |
+
price_score = 1 - ((product['price'] - min_price) / (max_price - min_price + 1e-6))
|
|
|
169 |
size_score = 1 if not preferred_sizes or product['size'] in preferred_sizes else 0.5
|
170 |
product_score = (price_score + size_score) / 2
|
171 |
+
|
172 |
if product_score >= min_score:
|
173 |
filtered.append({
|
174 |
**product,
|
175 |
"recommendation_score": round(product_score, 2)
|
176 |
})
|
177 |
+
|
|
|
178 |
return sorted(filtered, key=lambda x: x['recommendation_score'], reverse=True)
|
179 |
|
180 |
def calculate_requirements(area, coverage):
|
181 |
+
"""Calculate tile quantities and estimated costs"""
|
182 |
+
min_tiles = math.ceil(area / coverage)
|
183 |
+
suggested_tiles = math.ceil(min_tiles * 1.1)
|
184 |
return {
|
185 |
+
"minimum_tiles": min_tiles,
|
186 |
+
"suggested_tiles": suggested_tiles,
|
187 |
"estimated_cost_range": [
|
188 |
+
round(area * 3, 2), # example: ₹3 per sqft
|
189 |
+
round(area * 10, 2) # example: ₹10 per sqft
|
190 |
]
|
191 |
}
|
192 |
|
193 |
+
def validate_positive_number(value, field):
|
194 |
+
"""Raise ValueError if value is not a positive number"""
|
195 |
+
if not isinstance(value, (int, float)) or value <= 0:
|
196 |
+
raise ValueError(f"{field} must be a positive number")
|
197 |
+
|
198 |
if __name__ == '__main__':
|
199 |
app.run(host='0.0.0.0', port=5000, debug=True)
|