Spaces:
Sleeping
Sleeping
File size: 13,030 Bytes
277ab09 98a427a 277ab09 ecbe10b 277ab09 ecbe10b 98a427a 277ab09 98a427a 5d89fbb 98a427a 277ab09 98a427a 277ab09 98a427a 277ab09 98a427a 277ab09 98a427a 277ab09 98a427a 277ab09 98a427a 277ab09 ecbe10b 277ab09 ecbe10b 277ab09 ecbe10b 277ab09 ecbe10b 277ab09 ecbe10b 277ab09 ecbe10b 277ab09 ecbe10b 277ab09 ecbe10b 277ab09 ecbe10b 277ab09 ecbe10b 277ab09 ecbe10b 277ab09 ecbe10b 277ab09 ecbe10b 277ab09 ecbe10b 277ab09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForTokenClassification
import time
import json
import pandas as pd
from datetime import datetime
import os
from typing import List, Dict, Tuple
import re
MODEL_PATH = "CordwainerSmith/GolemPII-v1"
ENTITY_COLORS = {
"PHONE_NUM": "#FF9999",
"ID_NUM": "#99FF99",
"CC_NUM": "#9999FF",
"BANK_ACCOUNT_NUM": "#FFFF99",
"FIRST_NAME": "#FF99FF",
"LAST_NAME": "#99FFFF",
"CITY": "#FFB366",
"STREET": "#B366FF",
"POSTAL_CODE": "#66FFB3",
"EMAIL": "#66B3FF",
"DATE": "#FFB3B3",
"CC_PROVIDER": "#B3FFB3",
}
EXAMPLE_SENTENCES = [
"שם מלא: תלמה אריאלי מספר תעודת זהות: 61453324-8 תאריך לידה: 15/09/1983 כתובת: ארלוזורוב 22 פתח תקווה מיקוד 2731711 אימייל: [email protected] טלפון: 054-8884771 בפגישה זו נדונו פתרונות טכנולוגיים חדשניים לשיפור תהליכי עבודה. המשתתף יתבקש להציג מצגת בנושא בפגישה הבאה אשר שילם ב 5326-1003-5299-5478 מסטרקארד עם הוראת קבע ל 11-77-352300",
]
MODEL_DETAILS = {
"name": "GolemPII-v1: Hebrew PII Detection Model",
"description": 'The <a href="https://huggingface.co/CordwainerSmith/GolemPII-v1" target="_blank">GolemPII model</a> was specifically designed to identify and categorize various types of personally identifiable information (PII) present in Hebrew text. Its core intended usage revolves around enhancing privacy protection and facilitating the process of data anonymization. This makes it a good candidate for applications and systems that handle sensitive data, such as legal documents, medical records, or any text data containing PII, where the automatic redaction or removal of such information is essential for ensuring compliance with data privacy regulations and safeguarding individuals\' personal information. The model can be deployed on-premise with a relatively small hardware footprint, making it suitable for organizations with limited computing resources or those prioritizing local data processing.\n\nThe model was trained on the <a href="https://huggingface.co/datasets/CordwainerSmith/GolemGuard" target="_blank">GolemGuard</a> dataset, a Hebrew language dataset comprising over 115,000 examples of PII entities and containing both real and synthetically generated text examples. This data represents various document types and communication formats commonly found in Israeli professional and administrative contexts. GolemGuard covers a wide range of document types and encompasses a diverse array of PII entities, making it ideal for training and evaluating PII detection models.',
"base_model": "xlm-roberta-base",
"training_data": "Custom Hebrew PII dataset",
"detected_pii_entities": [
"FIRST_NAME",
"LAST_NAME",
"STREET",
"CITY",
"PHONE_NUM",
"EMAIL",
"ID_NUM",
"BANK_ACCOUNT_NUM",
"CC_NUM",
"CC_PROVIDER",
"DATE",
"POSTAL_CODE",
],
}
class PIIMaskingModel:
def __init__(self, model_name: str):
self.model_name = model_name
hf_token = st.secrets["hf_token"]
self.tokenizer = AutoTokenizer.from_pretrained(
model_name, use_auth_token=hf_token
)
self.model = AutoModelForTokenClassification.from_pretrained(
model_name, use_auth_token=hf_token
)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(self.device)
self.model.eval()
def process_text(
self, text: str
) -> Tuple[str, float, str, List[str], List[str], List[Dict]]:
start_time = time.time()
tokenized_inputs = self.tokenizer(
text,
truncation=True,
padding=False,
return_tensors="pt",
return_offsets_mapping=True,
add_special_tokens=True,
)
input_ids = tokenized_inputs.input_ids.to(self.device)
attention_mask = tokenized_inputs.attention_mask.to(self.device)
offset_mapping = tokenized_inputs["offset_mapping"][0].tolist()
# Handle special tokens
offset_mapping[0] = None # <s> token
offset_mapping[-1] = None # </s> token
with torch.no_grad():
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
predictions = outputs.logits.argmax(dim=-1).cpu().numpy()
predicted_labels = [
self.model.config.id2label[label_id] for label_id in predictions[0]
]
tokens = self.tokenizer.convert_ids_to_tokens(input_ids[0])
masked_text, colored_text, privacy_masks = self.mask_pii_in_sentence(
tokens, predicted_labels, text, offset_mapping
)
processing_time = time.time() - start_time
return (
masked_text,
processing_time,
colored_text,
tokens,
predicted_labels,
privacy_masks,
)
def _find_entity_span(
self,
i: int,
labels: List[str],
tokens: List[str],
offset_mapping: List[Tuple[int, int]],
) -> Tuple[int, str, int]:
current_entity = labels[i][2:] if labels[i].startswith("B-") else labels[i][2:]
j = i + 1
last_valid_end = offset_mapping[i][1] if offset_mapping[i] else None
while j < len(tokens):
if offset_mapping[j] is None:
j += 1
continue
next_label = labels[j]
if next_label.startswith("B-") and tokens[j].startswith("▁"):
break
if next_label.startswith("I-") and next_label[2:] != current_entity:
break
if next_label.startswith("I-") and next_label[2:] == current_entity:
last_valid_end = offset_mapping[j][1]
j += 1
elif next_label.startswith("B-") and not tokens[j].startswith("▁"):
last_valid_end = offset_mapping[j][1]
j += 1
else:
break
return j, current_entity, last_valid_end
def mask_pii_in_sentence(
self,
tokens: List[str],
labels: List[str],
original_text: str,
offset_mapping: List[Tuple[int, int]],
) -> Tuple[str, str, List[Dict]]:
privacy_masks = []
current_pos = 0
masked_text_parts = []
colored_text_parts = []
i = 0
while i < len(tokens):
if offset_mapping[i] is None:
i += 1
continue
current_label = labels[i]
if current_label.startswith(("B-", "I-")):
start_char = offset_mapping[i][0]
next_pos, entity_type, last_valid_end = self._find_entity_span(
i, labels, tokens, offset_mapping
)
if current_pos < start_char:
text_before = original_text[current_pos:start_char]
masked_text_parts.append(text_before)
colored_text_parts.append(text_before)
entity_value = original_text[start_char:last_valid_end]
mask = self._get_mask_for_entity(entity_type)
privacy_masks.append(
{
"label": entity_type,
"start": start_char,
"end": last_valid_end,
"value": entity_value,
"label_index": len(privacy_masks) + 1,
}
)
masked_text_parts.append(mask)
color = ENTITY_COLORS.get(entity_type, "#CCCCCC")
colored_text_parts.append(
f'<span style="background-color: {color}; color: black; padding: 2px; border-radius: 3px;">{mask}</span>'
)
current_pos = last_valid_end
i = next_pos
else:
if offset_mapping[i] is not None:
start_char = offset_mapping[i][0]
end_char = offset_mapping[i][1]
if current_pos < end_char:
text_chunk = original_text[current_pos:end_char]
masked_text_parts.append(text_chunk)
colored_text_parts.append(text_chunk)
current_pos = end_char
i += 1
if current_pos < len(original_text):
remaining_text = original_text[current_pos:]
masked_text_parts.append(remaining_text)
colored_text_parts.append(remaining_text)
return ("".join(masked_text_parts), "".join(colored_text_parts), privacy_masks)
def _get_mask_for_entity(self, entity_type: str) -> str:
return {
"PHONE_NUM": "[טלפון]",
"ID_NUM": "[ת.ז]",
"CC_NUM": "[כרטיס אשראי]",
"BANK_ACCOUNT_NUM": "[חשבון בנק]",
"FIRST_NAME": "[שם פרטי]",
"LAST_NAME": "[שם משפחה]",
"CITY": "[עיר]",
"STREET": "[רחוב]",
"POSTAL_CODE": "[מיקוד]",
"EMAIL": "[אימייל]",
"DATE": "[תאריך]",
"CC_PROVIDER": "[ספק כרטיס אשראי]",
"BANK": "[בנק]",
}.get(entity_type, f"[{entity_type}]")
def main():
st.set_page_config(layout="wide")
st.title("🗿 GolemPII: Hebrew PII Masking Application 🗿")
st.markdown(
"""
<style>
.rtl { direction: rtl; text-align: right; }
.entity-legend { padding: 5px; margin: 2px; border-radius: 3px; display: inline-block; }
.masked-text {
direction: rtl;
text-align: right;
line-height: 2;
padding: 10px;
background-color: #f6f8fa;
border-radius: 5px;
color: black;
white-space: pre-wrap;
}
.main h3 {
margin-bottom: 10px;
}
textarea {
direction: rtl !important;
text-align: right !important;
}
.stTextArea label {
direction: ltr !important;
text-align: left !important;
}
</style>
""",
unsafe_allow_html=True,
)
# Sidebar with model details
st.sidebar.markdown(
f"""
<div>
<h2>{MODEL_DETAILS['name']}</h2>
<p>{MODEL_DETAILS['description']}</p>
<h3>Supported PII Entities</h3>
<ul>
{" ".join([f'<li><span style="background-color: {ENTITY_COLORS.get(entity, "#CCCCCC")}; color: black; padding: 3px 5px; border-radius: 3px; margin-right: 5px;">{entity}</span></li>' for entity in MODEL_DETAILS['detected_pii_entities']])}
</ul>
</div>
""",
unsafe_allow_html=True,
)
text_input = st.text_area(
"Enter text to mask (separate multiple texts with commas):",
value="\n".join(EXAMPLE_SENTENCES),
height=200,
)
show_json = st.checkbox("Show JSON Output", value=True)
if st.button("Process Text"):
texts = [text.strip() for text in text_input.split(",") if text.strip()]
model = PIIMaskingModel()
for text in texts:
st.markdown(
'<h3 style="text-align: center;">Original Text</h3>',
unsafe_allow_html=True,
)
st.markdown(f'<div class="rtl">{text}</div>', unsafe_allow_html=True)
(
masked_text,
processing_time,
colored_text,
tokens,
predicted_labels,
privacy_masks,
) = model.process_text(text)
st.markdown(
'<h3 style="text-align: center;">Masked Text</h3>',
unsafe_allow_html=True,
)
st.markdown(
f'<div class="masked-text">{colored_text}</div>', unsafe_allow_html=True
)
st.markdown(f"Processing Time: {processing_time:.3f} seconds")
if show_json:
st.json(
{
"original": text,
"masked": masked_text,
"processing_time": processing_time,
"tokens": tokens,
"token_classes": predicted_labels,
"privacy_mask": privacy_masks,
"span_labels": [
[m["start"], m["end"], m["label"]] for m in privacy_masks
],
}
)
st.markdown("---")
if __name__ == "__main__":
main()
|