Corey Morris
commited on
Commit
·
12a9766
1
Parent(s):
18ec1ba
Moved radar plots to higher in the page
Browse files
app.py
CHANGED
|
@@ -276,32 +276,6 @@ else:
|
|
| 276 |
|
| 277 |
|
| 278 |
# end of custom scatter plots
|
| 279 |
-
st.markdown("## Notable findings and plots")
|
| 280 |
-
|
| 281 |
-
st.markdown('### Abstract Algebra Performance')
|
| 282 |
-
st.write("Small models showed surprisingly strong performance on the abstract algebra task. A 6 Billion parameter model is tied for the best performance on this task and there are a number of other small models in the top 10.")
|
| 283 |
-
plot_top_n(filtered_data, 'MMLU_abstract_algebra', 10)
|
| 284 |
-
|
| 285 |
-
fig = create_plot(filtered_data, 'Parameters', 'MMLU_abstract_algebra')
|
| 286 |
-
st.plotly_chart(fig)
|
| 287 |
-
|
| 288 |
-
# Moral scenarios plots
|
| 289 |
-
st.markdown("### Moral Scenarios Performance")
|
| 290 |
-
st.write("""
|
| 291 |
-
While smaller models can perform well at many tasks, the model size threshold for decent performance on moral scenarios is much higher.
|
| 292 |
-
There are no models with less than 13 billion parameters with performance much better than random chance. Further investigation into other capabilities that emerge at 13 billion parameters could help
|
| 293 |
-
identify capabilities that are important for moral reasoning.
|
| 294 |
-
""")
|
| 295 |
-
|
| 296 |
-
fig = create_plot(filtered_data, 'Parameters', 'MMLU_moral_scenarios', title="Impact of Parameter Count on Accuracy for Moral Scenarios")
|
| 297 |
-
st.plotly_chart(fig)
|
| 298 |
-
st.write()
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios')
|
| 303 |
-
st.plotly_chart(fig)
|
| 304 |
-
|
| 305 |
|
| 306 |
# Section to select a model and display radar and line charts
|
| 307 |
st.header("Compare a Selected Model to the 5 Models Closest in MMLU Average Performance")
|
|
@@ -338,6 +312,36 @@ fig_radar_top_differences = create_radar_chart_unfilled(filtered_data, closest_m
|
|
| 338 |
# Display the radar chart
|
| 339 |
st.plotly_chart(fig_radar_top_differences)
|
| 340 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
st.markdown("***Thank you to hugging face for running the evaluations and supplying the data as well as the original authors of the evaluations.***")
|
| 342 |
|
| 343 |
st.markdown("""
|
|
|
|
| 276 |
|
| 277 |
|
| 278 |
# end of custom scatter plots
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
|
| 280 |
# Section to select a model and display radar and line charts
|
| 281 |
st.header("Compare a Selected Model to the 5 Models Closest in MMLU Average Performance")
|
|
|
|
| 312 |
# Display the radar chart
|
| 313 |
st.plotly_chart(fig_radar_top_differences)
|
| 314 |
|
| 315 |
+
|
| 316 |
+
st.markdown("## Notable findings and plots")
|
| 317 |
+
|
| 318 |
+
st.markdown('### Abstract Algebra Performance')
|
| 319 |
+
st.write("Small models showed surprisingly strong performance on the abstract algebra task. A 6 Billion parameter model is tied for the best performance on this task and there are a number of other small models in the top 10.")
|
| 320 |
+
plot_top_n(filtered_data, 'MMLU_abstract_algebra', 10)
|
| 321 |
+
|
| 322 |
+
fig = create_plot(filtered_data, 'Parameters', 'MMLU_abstract_algebra')
|
| 323 |
+
st.plotly_chart(fig)
|
| 324 |
+
|
| 325 |
+
# Moral scenarios plots
|
| 326 |
+
st.markdown("### Moral Scenarios Performance")
|
| 327 |
+
st.write("""
|
| 328 |
+
While smaller models can perform well at many tasks, the model size threshold for decent performance on moral scenarios is much higher.
|
| 329 |
+
There are no models with less than 13 billion parameters with performance much better than random chance. Further investigation into other capabilities that emerge at 13 billion parameters could help
|
| 330 |
+
identify capabilities that are important for moral reasoning.
|
| 331 |
+
""")
|
| 332 |
+
|
| 333 |
+
fig = create_plot(filtered_data, 'Parameters', 'MMLU_moral_scenarios', title="Impact of Parameter Count on Accuracy for Moral Scenarios")
|
| 334 |
+
st.plotly_chart(fig)
|
| 335 |
+
st.write()
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios')
|
| 340 |
+
st.plotly_chart(fig)
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
|
| 345 |
st.markdown("***Thank you to hugging face for running the evaluations and supplying the data as well as the original authors of the evaluations.***")
|
| 346 |
|
| 347 |
st.markdown("""
|