File size: 14,368 Bytes
49d87c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07de8f2
49d87c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
"""
The gradio demo server for chatting with a single model.
"""

import datetime
import json
import os
import time
import uuid
import logging

import gradio as gr
import requests

from conversation import get_conv_template
from gradio_patch import Chatbot as grChatbot
from gradio_css import code_highlight_css
from utils import (
    WORKER_API_TIMEOUT, 
    ErrorCode,
    server_error_msg,
    get_window_url_params_js,
)


logging.basicConfig(
    format='%(asctime)s %(levelname)s: %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p')
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)


headers = {"User-Agent": "fastchat Client"}

no_change_btn = gr.Button.update()
enable_btn = gr.Button.update(interactive=True)
disable_btn = gr.Button.update(interactive=False)

controller_url = os.environ['controller_url']
concurrency_count = int(os.environ['concurrency_count'])

learn_more_md = ("""
### Notice
- All the models in this demo run on 4th Generation Intel® Xeon® (Sapphire Rapids) utilizing AMX operations and mixed precision inference
- This demo is based on the FastChat demo server. [[GitHub]](https://github.com/lm-sys/FastChat)

### Terms of use
By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It can produce factually incorrect output, and should not be relied on to produce factually accurate information. The service only provides limited safety measures and may generate lewd, biased or otherwise offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.

### License
The service is a research preview intended for non-commercial use only, subject to the [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
""")


def get_model_list(controller_url):
    ret = requests.post(controller_url + "/refresh_all_workers")
    assert ret.status_code == 200
    ret = requests.post(controller_url + "/list_models")
    models = ret.json()["models"]
    models.sort()
    logger.info(f"Models: {models}")
    return models


def load_demo_refresh_model_list(url_params):
    models = get_model_list(controller_url)
    selected_model = models[0] if len(models) > 0 else ""
    if "model" in url_params:
        model = url_params["model"]
        if model in models:
            selected_model = model

    dropdown_update = gr.Dropdown.update(
        choices=models, value=selected_model, visible=True
    )

    state = None
    return (
        state,
        dropdown_update,
        gr.Chatbot.update(visible=True),
        gr.Textbox.update(visible=True),
        gr.Button.update(visible=True),
        gr.Row.update(visible=True),
        gr.Accordion.update(visible=True),
    )


def load_demo_reload_model(url_params, request: gr.Request):
    logger.info(
        f"load_demo_reload_model. ip: {request.client.host}. params: {url_params}"
    )
    return load_demo_refresh_model_list(url_params)


def load_demo_single(models, url_params):
    dropdown_update = gr.Dropdown.update(visible=True)
    if "model" in url_params:
        model = url_params["model"]
        if model in models:
            dropdown_update = gr.Dropdown.update(value=model, visible=True)

    state = None
    return (
        state,
        dropdown_update,
        gr.Chatbot.update(visible=True),
        gr.Textbox.update(visible=True),
        gr.Button.update(visible=True),
        gr.Row.update(visible=True),
        gr.Accordion.update(visible=True),
    )


def load_demo(url_params, request: gr.Request):
    logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
    return load_demo_single(models, url_params)


def regenerate(state, request: gr.Request):
    logger.info(f"regenerate. ip: {request.client.host}")
    state.messages[-1][-1] = None
    state.skip_next = False
    return (state, state.to_gradio_chatbot(), "") + (disable_btn,) * 5


def clear_history(request: gr.Request):
    logger.info(f"clear_history. ip: {request.client.host}")
    state = None
    return (state, [], "") + (disable_btn,) * 5


def add_text(state, text, request: gr.Request):
    logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")

    if state is None:
        state = get_conv_template("vicuna_v1.1")

    if len(text) <= 0:
        state.skip_next = True
        return (state, state.to_gradio_chatbot(), "") + (no_change_btn,) * 5

    text = text[:1536]  # Hard cut-off
    state.append_message(state.roles[0], text)
    state.append_message(state.roles[1], None)
    state.skip_next = False
    return (state, state.to_gradio_chatbot(), "") + (disable_btn,) * 5


def post_process_code(code):
    sep = "\n```"
    if sep in code:
        blocks = code.split(sep)
        if len(blocks) % 2 == 1:
            for i in range(1, len(blocks), 2):
                blocks[i] = blocks[i].replace("\\_", "_")
        code = sep.join(blocks)
    return code


def model_worker_stream_iter(
    conv, model_name, worker_addr, prompt, temperature, top_p, max_new_tokens
):
    # Make requests
    gen_params = {
        "model": model_name,
        "prompt": prompt,
        "temperature": temperature,
        "top_p": top_p,
        "max_new_tokens": max_new_tokens,
        "stop": conv.stop_str,
        "stop_token_ids": conv.stop_token_ids,
        "echo": False,
    }
    logger.info(f"==== request ====\n{gen_params}")

    # Stream output
    response = requests.post(
        worker_addr + "/worker_generate_stream",
        headers=headers,
        json=gen_params,
        stream=True,
        timeout=WORKER_API_TIMEOUT,
    )
    for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
        if chunk:
            data = json.loads(chunk.decode())
            yield data


def http_bot(
    state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request
):
    logger.info(f"http_bot. ip: {request.client.host}")
    start_tstamp = time.time()
    model_name = model_selector
    temperature = float(temperature)
    top_p = float(top_p)
    max_new_tokens = int(max_new_tokens)

    if state.skip_next:
        # This generate call is skipped due to invalid inputs
        yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
        return

    if len(state.messages) == state.offset + 2:
        # First round of conversation
        new_state = get_conv_template(model_name.lower())
        new_state.conv_id = uuid.uuid4().hex
        new_state.model_name = state.model_name or model_selector
        new_state.append_message(new_state.roles[0], state.messages[-2][1])
        new_state.append_message(new_state.roles[1], None)
        state = new_state

    # Construct prompt
    conv = state
    if "chatglm" in model_name:
        prompt = list(list(x) for x in conv.messages[conv.offset :])
    else:
        prompt = conv.get_prompt()
    stream_iter = model_worker_stream_iter(
        conv, model_name, controller_url, prompt, temperature, top_p, max_new_tokens
    )

    state.messages[-1][-1] = "▌"
    yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5

    try:
        for data in stream_iter:
            if data["error_code"] == 0:
                output = data["text"].strip()
                if "vicuna" in model_name:
                    output = post_process_code(output)
                state.messages[-1][-1] = output + "▌"
                yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
            else:
                output = data["text"] + f"\n\n(error_code: {data['error_code']})"
                state.messages[-1][-1] = output
                yield (state, state.to_gradio_chatbot()) + (
                    disable_btn,
                    disable_btn,
                    disable_btn,
                    enable_btn,
                    enable_btn,
                )
                return
            time.sleep(0.02)
    except requests.exceptions.RequestException as e:
        state.messages[-1][-1] = (
            f"{server_error_msg}\n\n"
            f"(error_code: {ErrorCode.GRADIO_REQUEST_ERROR}, {e})"
        )
        yield (state, state.to_gradio_chatbot()) + (
            disable_btn,
            disable_btn,
            disable_btn,
            enable_btn,
            enable_btn,
        )
        return
    except Exception as e:
        state.messages[-1][-1] = (
            f"{server_error_msg}\n\n"
            f"(error_code: {ErrorCode.GRADIO_STREAM_UNKNOWN_ERROR}, {e})"
        )
        yield (state, state.to_gradio_chatbot()) + (
            disable_btn,
            disable_btn,
            disable_btn,
            enable_btn,
            enable_btn,
        )
        return

    state.messages[-1][-1] = state.messages[-1][-1][:-1]
    yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5

    finish_tstamp = time.time()
    logger.info(f"{output}")

    # TODO 
    # with open(get_conv_log_filename(), "a") as fout:
    #     data = {
    #         "tstamp": round(finish_tstamp, 4),
    #         "type": "chat",
    #         "model": model_name,
    #         "gen_params": {
    #             "temperature": temperature,
    #             "top_p": top_p,
    #             "max_new_tokens": max_new_tokens,
    #         },
    #         "start": round(start_tstamp, 4),
    #         "finish": round(start_tstamp, 4),
    #         "state": state.dict(),
    #         "ip": request.client.host,
    #     }
    #     fout.write(json.dumps(data) + "\n")


block_css = (
    code_highlight_css
    + """
pre {
    white-space: pre-wrap;       /* Since CSS 2.1 */
    white-space: -moz-pre-wrap;  /* Mozilla, since 1999 */
    white-space: -pre-wrap;      /* Opera 4-6 */
    white-space: -o-pre-wrap;    /* Opera 7 */
    word-wrap: break-word;       /* Internet Explorer 5.5+ */
}
#notice_markdown th {
    display: none;
}
"""
)


def build_single_model_ui(models):
    notice_markdown = ("""
# <p style="text-align: center;">Chat with Intel Labs optimized Large Language Models</p>

### Choose a model to chat with
""")

    state = gr.State()
    gr.Markdown(notice_markdown, elem_id="notice_markdown")

    with gr.Row(elem_id="model_selector_row"):
        model_selector = gr.Dropdown(
            choices=models,
            value=models[0] if len(models) > 0 else "",
            interactive=True,
            show_label=False,
        ).style(container=False)

    chatbot = grChatbot(
        elem_id="chatbot", label="Scroll down and start chatting", visible=False,
    ).style(height=550)
    with gr.Row():
        with gr.Column(scale=20):
            textbox = gr.Textbox(
                show_label=False,
                placeholder="Type your message...",
                visible=False,
            ).style(container=False)
        with gr.Column(scale=1, min_width=50):
            send_btn = gr.Button(value="Send", visible=False)

    with gr.Row(visible=False) as button_row:
        regenerate_btn = gr.Button(value="Regenerate", interactive=False)
        clear_btn = gr.Button(value="Clear history", interactive=False)

    with gr.Accordion("Parameters", open=False, visible=False) as parameter_row:
        temperature = gr.Slider(
            minimum=0.0,
            maximum=1.0,
            value=0.1,
            step=0.1,
            interactive=True,
            label="Temperature",
        )
        top_p = gr.Slider(
            minimum=0.0,
            maximum=1.0,
            value=1.0,
            step=0.1,
            interactive=True,
            label="Top P",
        )
        max_output_tokens = gr.Slider(
            minimum=0,
            maximum=1024,
            value=512,
            step=64,
            interactive=True,
            label="Max output tokens",
        )

    gr.Markdown(learn_more_md)

    btn_list = [regenerate_btn, clear_btn]
    regenerate_btn.click(regenerate, state, [state, chatbot, textbox] + btn_list).then(
        http_bot,
        [state, model_selector, temperature, top_p, max_output_tokens],
        [state, chatbot] + btn_list,
    )
    clear_btn.click(clear_history, None, [state, chatbot, textbox] + btn_list)

    model_selector.change(clear_history, None, [state, chatbot, textbox] + btn_list)

    textbox.submit(
        add_text, [state, textbox], [state, chatbot, textbox] + btn_list
    ).then(
        http_bot,
        [state, model_selector, temperature, top_p, max_output_tokens],
        [state, chatbot] + btn_list,
    )
    send_btn.click(
        add_text, [state, textbox], [state, chatbot, textbox] + btn_list
    ).then(
        http_bot,
        [state, model_selector, temperature, top_p, max_output_tokens],
        [state, chatbot] + btn_list,
    )

    return state, model_selector, chatbot, textbox, send_btn, button_row, parameter_row


def build_demo(models):
    with gr.Blocks(
        title="Chat with Open Large Language Models",
        theme=gr.themes.Soft(),
        css=block_css,
    ) as demo:
        url_params = gr.JSON(visible=False)
        
        with gr.Row():
            gr.Column(scale=1, min_width=0)
            with gr.Column(scale=9):
                (
                    state,
                    model_selector,
                    chatbot,
                    textbox,
                    send_btn,
                    button_row,
                    parameter_row,
                ) = build_single_model_ui(models)
            gr.Column(scale=1, min_width=0)

        demo.load(
            load_demo_reload_model,
            [url_params],
            [
                state,
                model_selector,
                chatbot,
                textbox,
                send_btn,
                button_row,
                parameter_row,
            ],
            _js=get_window_url_params_js,
        )

    return demo


if __name__ == "__main__":
    models = get_model_list(controller_url)

    demo = build_demo(models)
    demo.queue(
        concurrency_count=concurrency_count, status_update_rate=10, api_open=False
    ).launch()