from typing import Iterator from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("OpenBuddy/openbuddy-gguf", model_file="openbuddy-mistral-7b-v13.1-Q3_K.gguf", model_type="mistral", gpu_layers=0) def run(message: str, chat_history: list[tuple[str, str]], system_prompt: str, max_new_tokens: int = 1024, temperature: float = 0.3, top_p: float = 0.85, top_k: int = 5) -> Iterator[str]: history = [] print(chat_history) result="" for i in chat_history: history.append({"role": "user", "content": i[0]}) history.append({"role": "assistant", "content": i[1]}) print(history) history.append({"role": "user", "content": message}) for response in llm.create_chat_completion(history,stop=[""],stream=True,max_tokens=-1,temperature=temperature,top_k=top_k,top_p=top_p,repeat_penalty=1.1): if "content" in response["choices"][0]["delta"]: result = result + response["choices"][0]["delta"]["content"] yield result