File size: 6,273 Bytes
a9f41ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a766717
 
a9f41ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import gradio as gr

import copy
import random
import os
import requests
import time
import sys

from huggingface_hub import snapshot_download
from llama_cpp import Llama


SYSTEM_PROMPT = '''You are a helpful, respectful and honest INTP-T AI Assistant named "Shi-Ci" in English or "ๅ…ฎ่พž" in Chinese.
You are good at speaking English and Chinese.
You are talking to a human User. If the question is meaningless, please explain the reason and don't share false information.
You are based on SEA model, trained by "SSFW NLPark" team, not related to GPT, LLaMA, Meta, Mistral or OpenAI.
Let's work this out in a step by step way to be sure we have the right answer.\n\n'''
SYSTEM_TOKEN = 1587
USER_TOKEN = 2188
BOT_TOKEN = 12435
LINEBREAK_TOKEN = 13


ROLE_TOKENS = {
    "user": USER_TOKEN,
    "bot": BOT_TOKEN,
    "system": SYSTEM_TOKEN
}


def get_message_tokens(model, role, content):
    message_tokens = model.tokenize(content.encode("utf-8"))
    message_tokens.insert(1, ROLE_TOKENS[role])
    message_tokens.insert(2, LINEBREAK_TOKEN)
    message_tokens.append(model.token_eos())
    return message_tokens


def get_system_tokens(model):
    system_message = {"role": "system", "content": SYSTEM_PROMPT}
    return get_message_tokens(model, **system_message)


repo_name = "TheBloke/mpt-30B-chat-GGML"
model_name = "mpt-30b-chat.ggmlv0.q4_0.bin"

snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name)

model = Llama(
    model_path=model_name,
    n_ctx=2000,
    n_parts=1,
)

max_new_tokens = 1500

def user(message, history):
    new_history = history + [[message, None]]
    return "", new_history


def bot(
    history,
    system_prompt,
    top_p,
    top_k,
    temp
):
    tokens = get_system_tokens(model)[:]
    tokens.append(LINEBREAK_TOKEN)

    for user_message, bot_message in history[:-1]:
        message_tokens = get_message_tokens(model=model, role="user", content=user_message)
        tokens.extend(message_tokens)
        if bot_message:
            message_tokens = get_message_tokens(model=model, role="bot", content=bot_message)
            tokens.extend(message_tokens)

    last_user_message = history[-1][0]
    message_tokens = get_message_tokens(model=model, role="user", content=last_user_message)
    tokens.extend(message_tokens)

    role_tokens = [model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN]
    tokens.extend(role_tokens)
    generator = model.generate(
        tokens,
        top_k=top_k,
        top_p=top_p,
        temp=temp
    )

    partial_text = ""
    for i, token in enumerate(generator):
        if token == model.token_eos() or (max_new_tokens is not None and i >= max_new_tokens):
            break
        partial_text += model.detokenize([token]).decode("utf-8", "ignore")
        history[-1][1] = partial_text
        yield history


with gr.Blocks(
    theme=gr.themes.Soft()
) as demo:
    gr.Markdown(
        f"""<h1><center>ๅ…ฎ่พžยทๆž่พž-ไบบๅทฅๆ™บ่ƒฝๅŠฉ็†</center></h1>
        ่ฟ™ๅ„ฟๆ˜ฏไธ€ไธช**ไธญๆ–‡**ๆจกๅž‹็š„้ƒจ็ฝฒ. If you are interested in other languages, please check other models, such as [MPT-7B-Chat](https://huggingface.co/spaces/mosaicml/mpt-7b-chat).
        ่ฟ™ๆ˜ฏ้‡ๅŒ–็‰ˆๅ…ฎ่พžยทๆž่พž็š„้ƒจ็ฝฒ๏ผŒๅ…ทๆœ‰**70ไบฟ**ไธชๅ‚ๆ•ฐ๏ผŒๅœจ CPU ไธŠ่ฟ่กŒใ€‚
        SLIDE ๆ˜ฏไธ€็งไผš่ฏ่ฏญ่จ€ๆจกๅž‹๏ผŒๅœจๅคš็ง็ฑปๅž‹็š„่ฏญๆ–™ๅบ“ไธŠ่ฟ›่กŒ่ฎญ็ปƒใ€‚
        ๆœฌ่Š‚็›ฎ็”ฑไธŠๆตทๅธˆ่Œƒๅคงๅญฆ้™„ๅฑžๅค–ๅ›ฝ่ฏญไธญๅญฆ**NLPark**่ตžๅŠฉๆ’ญๅ‡บ๏ฝž
        """
    )
    with gr.Row():
        with gr.Column(scale=5):
            system_prompt = gr.Textbox(label="็ณป็ปŸๆ็คบ่ฏ", placeholder="", value=SYSTEM_PROMPT, interactive=False)
            chatbot = gr.Chatbot(label="ๅ…ฎ่พžๅฆ‚ๆ˜ฏ่ฏด").style(height=400)
        with gr.Column(min_width=80, scale=1):
            with gr.Tab(label="่ฎพ็ฝฎๅ‚ๆ•ฐ"):
                top_p = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    value=0.9,
                    step=0.05,
                    interactive=True,
                    label="Top-p",
                )
                top_k = gr.Slider(
                    minimum=10,
                    maximum=100,
                    value=30,
                    step=5,
                    interactive=True,
                    label="Top-k",
                )
                temp = gr.Slider(
                    minimum=0.0,
                    maximum=2.0,
                    value=0.01,
                    step=0.01,
                    interactive=True,
                    label="ๆƒ…ๆ„Ÿๆธฉๅบฆ"
                )
    with gr.Row():
        with gr.Column():
            msg = gr.Textbox(
                label="ๆฅ้—ฎ้—ฎๅ…ฎ่พžๅงโ€ฆโ€ฆ",
                placeholder="ๅ…ฎ่พžๆŠ˜ๅฏฟไธญโ€ฆโ€ฆ",
                show_label=False,
            ).style(container=False)
        with gr.Column():
            with gr.Row():
                submit = gr.Button("ๅผ€ๅ‡น๏ผ")
                stop = gr.Button("ๅ…จๅฑ€ๆ—ถ็ฉบๆ–ญ่ฃ‚")
                clear = gr.Button("ๆ‰“ๆ‰ซ็พคๅ†…ๅžƒๅœพ")
    with gr.Row():
        gr.Markdown(
            """่ญฆๅ‘Š๏ผš่ฏฅๆจกๅž‹ๅฏ่ƒฝไผš็”Ÿๆˆไบ‹ๅฎžไธŠๆˆ–้“ๅพทไธŠไธๆญฃ็กฎ็š„ๆ–‡ๆœฌใ€‚NLParkๅ’Œๅ…ฎ่พžๅฏนๆญคไธๆ‰ฟๆ‹…ไปปไฝ•่ดฃไปปใ€‚"""
        )

    # Pressing Enter
    submit_event = msg.submit(
        fn=user,
        inputs=[msg, chatbot],
        outputs=[msg, chatbot],
        queue=False,
    ).success(
        fn=bot,
        inputs=[
            chatbot,
            system_prompt,
            top_p,
            top_k,
            temp
        ],
        outputs=chatbot,
        queue=True,
    )

    # Pressing the button
    submit_click_event = submit.click(
        fn=user,
        inputs=[msg, chatbot],
        outputs=[msg, chatbot],
        queue=False,
    ).success(
        fn=bot,
        inputs=[
            chatbot,
            system_prompt,
            top_p,
            top_k,
            temp
        ],
        outputs=chatbot,
        queue=True,
    )

    # Stop generation
    stop.click(
        fn=None,
        inputs=None,
        outputs=None,
        cancels=[submit_event, submit_click_event],
        queue=False,
    )

    # Clear history
    clear.click(lambda: None, None, chatbot, queue=False)

demo.queue(max_size=128, concurrency_count=1)
demo.launch()