Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -21,40 +21,6 @@ def get_image_base64(path):
|
|
21 |
def load_model():
|
22 |
return ModelWrapper()
|
23 |
|
24 |
-
"""@st.cache_resource
|
25 |
-
class ModelWrapper(object):
|
26 |
-
MODELS_DIR: str = "./new_models/"
|
27 |
-
MODEL_NAME: str = "model"
|
28 |
-
TOKENIZER: str = "tokenizer"
|
29 |
-
|
30 |
-
def __init__(self):
|
31 |
-
self.model = AutoModelForSequenceClassification.from_pretrained(
|
32 |
-
ModelWrapper.MODELS_DIR + ModelWrapper.MODEL_NAME, torchscript=True
|
33 |
-
)
|
34 |
-
self.tokenizer = BertTokenizerFast.from_pretrained(
|
35 |
-
"blanchefort/rubert-base-cased-sentiment"
|
36 |
-
)
|
37 |
-
self.id2label: dict[int, str] = {0: "__label__positive", 1: "__label__negative"}
|
38 |
-
|
39 |
-
@torch.no_grad()
|
40 |
-
def __call__(self, text: str) -> str:
|
41 |
-
max_input_length = (
|
42 |
-
self.model.config.max_position_embeddings
|
43 |
-
) # 512 for this model
|
44 |
-
inputs = self.tokenizer(
|
45 |
-
text,
|
46 |
-
max_length=max_input_length,
|
47 |
-
padding=True,
|
48 |
-
truncation=True,
|
49 |
-
return_tensors="pt",
|
50 |
-
)
|
51 |
-
outputs = self.model(
|
52 |
-
**inputs, return_dict=True
|
53 |
-
) # output is logits for huggingfcae transformers
|
54 |
-
predicted = torch.nn.functional.softmax(outputs.logits, dim=1)
|
55 |
-
predicted_id = torch.argmax(predicted, dim=1).numpy()[0]
|
56 |
-
return self.id2label[predicted_id]"""
|
57 |
-
|
58 |
model_wrapper= load_model()
|
59 |
|
60 |
bin_str = get_image_base64("./билли.png")
|
|
|
21 |
def load_model():
|
22 |
return ModelWrapper()
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
model_wrapper= load_model()
|
25 |
|
26 |
bin_str = get_image_base64("./билли.png")
|