Cricles commited on
Commit
edf196f
·
verified ·
1 Parent(s): 6bacb29

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -34
app.py CHANGED
@@ -21,40 +21,6 @@ def get_image_base64(path):
21
  def load_model():
22
  return ModelWrapper()
23
 
24
- """@st.cache_resource
25
- class ModelWrapper(object):
26
- MODELS_DIR: str = "./new_models/"
27
- MODEL_NAME: str = "model"
28
- TOKENIZER: str = "tokenizer"
29
-
30
- def __init__(self):
31
- self.model = AutoModelForSequenceClassification.from_pretrained(
32
- ModelWrapper.MODELS_DIR + ModelWrapper.MODEL_NAME, torchscript=True
33
- )
34
- self.tokenizer = BertTokenizerFast.from_pretrained(
35
- "blanchefort/rubert-base-cased-sentiment"
36
- )
37
- self.id2label: dict[int, str] = {0: "__label__positive", 1: "__label__negative"}
38
-
39
- @torch.no_grad()
40
- def __call__(self, text: str) -> str:
41
- max_input_length = (
42
- self.model.config.max_position_embeddings
43
- ) # 512 for this model
44
- inputs = self.tokenizer(
45
- text,
46
- max_length=max_input_length,
47
- padding=True,
48
- truncation=True,
49
- return_tensors="pt",
50
- )
51
- outputs = self.model(
52
- **inputs, return_dict=True
53
- ) # output is logits for huggingfcae transformers
54
- predicted = torch.nn.functional.softmax(outputs.logits, dim=1)
55
- predicted_id = torch.argmax(predicted, dim=1).numpy()[0]
56
- return self.id2label[predicted_id]"""
57
-
58
  model_wrapper= load_model()
59
 
60
  bin_str = get_image_base64("./билли.png")
 
21
  def load_model():
22
  return ModelWrapper()
23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  model_wrapper= load_model()
25
 
26
  bin_str = get_image_base64("./билли.png")