Rewrite old function from modeling_opt.py
Browse files
    	
        llava/model/language_model/mpt/hf_prefixlm_converter.py
    CHANGED
    
    | @@ -18,8 +18,6 @@ from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM | |
| 18 | 
             
            from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
         | 
| 19 | 
             
            from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
         | 
| 20 | 
             
            from transformers.models.opt.modeling_opt import OPTForCausalLM
         | 
| 21 | 
            -
            from transformers.models.opt.modeling_opt import _expand_mask as _expand_mask_opt
         | 
| 22 | 
            -
            from transformers.models.opt.modeling_opt import _make_causal_mask as _make_causal_mask_opt
         | 
| 23 | 
             
            logger = logging.get_logger(__name__)
         | 
| 24 | 
             
            _SUPPORTED_GPT_MODELS = (GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM)
         | 
| 25 | 
             
            CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
         | 
| @@ -52,6 +50,36 @@ def _expand_mask_bloom(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor: | |
| 52 | 
             
                expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
         | 
| 53 | 
             
                return expanded_mask.expand(batch_size, 1, tgt_length, src_length)
         | 
| 54 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 55 | 
             
            def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_TYPES:
         | 
| 56 | 
             
                """Converts a GPT-style Causal LM to a Prefix LM.
         | 
| 57 |  | 
|  | |
| 18 | 
             
            from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
         | 
| 19 | 
             
            from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
         | 
| 20 | 
             
            from transformers.models.opt.modeling_opt import OPTForCausalLM
         | 
|  | |
|  | |
| 21 | 
             
            logger = logging.get_logger(__name__)
         | 
| 22 | 
             
            _SUPPORTED_GPT_MODELS = (GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM)
         | 
| 23 | 
             
            CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
         | 
|  | |
| 50 | 
             
                expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
         | 
| 51 | 
             
                return expanded_mask.expand(batch_size, 1, tgt_length, src_length)
         | 
| 52 |  | 
| 53 | 
            +
            def _make_causal_mask_opt(
         | 
| 54 | 
            +
                input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
         | 
| 55 | 
            +
            ):
         | 
| 56 | 
            +
                """
         | 
| 57 | 
            +
                Make causal mask used for bi-directional self-attention.
         | 
| 58 | 
            +
                """
         | 
| 59 | 
            +
                bsz, tgt_len = input_ids_shape
         | 
| 60 | 
            +
                mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
         | 
| 61 | 
            +
                mask_cond = torch.arange(mask.size(-1), device=device)
         | 
| 62 | 
            +
                mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
         | 
| 63 | 
            +
                mask = mask.to(dtype)
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                if past_key_values_length > 0:
         | 
| 66 | 
            +
                    mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
         | 
| 67 | 
            +
                return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
         | 
| 68 | 
            +
             | 
| 69 | 
            +
             | 
| 70 | 
            +
            def _expand_mask_opt(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
         | 
| 71 | 
            +
                """
         | 
| 72 | 
            +
                Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
         | 
| 73 | 
            +
                """
         | 
| 74 | 
            +
                bsz, src_len = mask.size()
         | 
| 75 | 
            +
                tgt_len = tgt_len if tgt_len is not None else src_len
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                inverted_mask = 1.0 - expanded_mask
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
         | 
| 82 | 
            +
             | 
| 83 | 
             
            def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_TYPES:
         | 
| 84 | 
             
                """Converts a GPT-style Causal LM to a Prefix LM.
         | 
| 85 |  | 
