Andrea Seveso commited on
Commit
9df8442
·
1 Parent(s): 6aa8d26

Remove columns from eval

Browse files
Files changed (2) hide show
  1. .gitignore +1 -0
  2. src/display/utils.py +36 -36
.gitignore CHANGED
@@ -11,3 +11,4 @@ eval-results/
11
  eval-queue-bk/
12
  eval-results-bk/
13
  logs/
 
 
11
  eval-queue-bk/
12
  eval-results-bk/
13
  logs/
14
+ results/*
src/display/utils.py CHANGED
@@ -5,6 +5,7 @@ import pandas as pd
5
 
6
  from src.about import Tasks
7
 
 
8
  def fields(raw_class):
9
  return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
10
 
@@ -20,52 +21,59 @@ class ColumnContent:
20
  hidden: bool = False
21
  never_hidden: bool = False
22
 
23
- ## Leaderboard columns
 
24
  auto_eval_column_dict = []
25
  # Init
26
- auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
27
- auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
28
- #Scores
 
 
29
  # auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
30
  for task in Tasks:
31
- auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
 
32
  # Model information
33
- auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
34
- auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
35
- auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
36
- auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
37
- auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
38
- auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
39
- auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
40
- auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
41
- auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
 
42
 
43
  # We use make dataclass to dynamically fill the scores from Tasks
44
- AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
 
 
 
 
45
 
46
- ## For the queue columns in the submission tab
47
  @dataclass(frozen=True)
48
  class EvalQueueColumn: # Queue column
49
  model = ColumnContent("model", "markdown", True)
50
  revision = ColumnContent("revision", "str", True)
51
  private = ColumnContent("private", "bool", True)
52
  precision = ColumnContent("precision", "str", True)
53
- weight_type = ColumnContent("weight_type", "str", "Original")
54
  status = ColumnContent("status", "str", True)
55
 
56
- ## All the model information that we might need
 
 
57
  @dataclass
58
  class ModelDetails:
59
  name: str
60
  display_name: str = ""
61
- symbol: str = "" # emoji
62
 
63
 
64
  class ModelType(Enum):
65
- PT = ModelDetails(name="pretrained", symbol="🟢")
66
- FT = ModelDetails(name="fine-tuned", symbol="🔶")
67
- IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
68
- RL = ModelDetails(name="RL-tuned", symbol="🟦")
69
  Unknown = ModelDetails(name="", symbol="?")
70
 
71
  def to_str(self, separator=" "):
@@ -73,20 +81,12 @@ class ModelType(Enum):
73
 
74
  @staticmethod
75
  def from_str(type):
76
- if "fine-tuned" in type or "🔶" in type:
77
- return ModelType.FT
78
- if "pretrained" in type or "🟢" in type:
79
- return ModelType.PT
80
- if "RL-tuned" in type or "🟦" in type:
81
- return ModelType.RL
82
- if "instruction-tuned" in type or "⭕" in type:
83
- return ModelType.IFT
84
  return ModelType.Unknown
85
 
86
- class WeightType(Enum):
87
- Adapter = ModelDetails("Adapter")
88
- Original = ModelDetails("Original")
89
- Delta = ModelDetails("Delta")
90
 
91
  class Precision(Enum):
92
  float16 = ModelDetails("float16")
@@ -100,6 +100,7 @@ class Precision(Enum):
100
  return Precision.bfloat16
101
  return Precision.Unknown
102
 
 
103
  # Column selection
104
  COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
105
 
@@ -107,4 +108,3 @@ EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
107
  EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
108
 
109
  BENCHMARK_COLS = [t.value.col_name for t in Tasks]
110
-
 
5
 
6
  from src.about import Tasks
7
 
8
+
9
  def fields(raw_class):
10
  return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
11
 
 
21
  hidden: bool = False
22
  never_hidden: bool = False
23
 
24
+
25
+ # Leaderboard columns
26
  auto_eval_column_dict = []
27
  # Init
28
+ auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent(
29
+ "T", "str", True, never_hidden=True)])
30
+ auto_eval_column_dict.append(["model", ColumnContent, ColumnContent(
31
+ "Model", "markdown", True, never_hidden=True)])
32
+ # Scores
33
  # auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
34
  for task in Tasks:
35
+ auto_eval_column_dict.append(
36
+ [task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
37
  # Model information
38
+ auto_eval_column_dict.append(
39
+ ["model_type", ColumnContent, ColumnContent("Type", "str", False)])
40
+ auto_eval_column_dict.append(
41
+ ["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
42
+ auto_eval_column_dict.append(
43
+ ["precision", ColumnContent, ColumnContent("Precision", "str", False)])
44
+ auto_eval_column_dict.append(
45
+ ["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
46
+ auto_eval_column_dict.append(
47
+ ["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
48
 
49
  # We use make dataclass to dynamically fill the scores from Tasks
50
+ AutoEvalColumn = make_dataclass(
51
+ "AutoEvalColumn", auto_eval_column_dict, frozen=True)
52
+
53
+ # For the queue columns in the submission tab
54
+
55
 
 
56
  @dataclass(frozen=True)
57
  class EvalQueueColumn: # Queue column
58
  model = ColumnContent("model", "markdown", True)
59
  revision = ColumnContent("revision", "str", True)
60
  private = ColumnContent("private", "bool", True)
61
  precision = ColumnContent("precision", "str", True)
 
62
  status = ColumnContent("status", "str", True)
63
 
64
+ # All the model information that we might need
65
+
66
+
67
  @dataclass
68
  class ModelDetails:
69
  name: str
70
  display_name: str = ""
71
+ symbol: str = "" # emoji
72
 
73
 
74
  class ModelType(Enum):
75
+ OP = ModelDetails(name="pretrained", symbol="🟢")
76
+ CL = ModelDetails(name="instruction-tuned", symbol="")
 
 
77
  Unknown = ModelDetails(name="", symbol="?")
78
 
79
  def to_str(self, separator=" "):
 
81
 
82
  @staticmethod
83
  def from_str(type):
84
+ if "open" in type or "🟢" in type:
85
+ return ModelType.OP
86
+ if "closed" in type or "" in type:
87
+ return ModelType.CL
 
 
 
 
88
  return ModelType.Unknown
89
 
 
 
 
 
90
 
91
  class Precision(Enum):
92
  float16 = ModelDetails("float16")
 
100
  return Precision.bfloat16
101
  return Precision.Unknown
102
 
103
+
104
  # Column selection
105
  COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
106
 
 
108
  EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
109
 
110
  BENCHMARK_COLS = [t.value.col_name for t in Tasks]