Andrea Seveso commited on
Commit
dc347e2
·
1 Parent(s): fd6f23a
src/display/utils.py CHANGED
@@ -37,8 +37,6 @@ for task in Tasks:
37
  # Model information
38
  auto_eval_column_dict.append(
39
  ["model_type", ColumnContent, ColumnContent("Type", "str", False)])
40
- auto_eval_column_dict.append(
41
- ["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
42
  auto_eval_column_dict.append(
43
  ["precision", ColumnContent, ColumnContent("Precision", "str", False)])
44
  auto_eval_column_dict.append(
 
37
  # Model information
38
  auto_eval_column_dict.append(
39
  ["model_type", ColumnContent, ColumnContent("Type", "str", False)])
 
 
40
  auto_eval_column_dict.append(
41
  ["precision", ColumnContent, ColumnContent("Precision", "str", False)])
42
  auto_eval_column_dict.append(
src/leaderboard/read_evals.py CHANGED
@@ -100,7 +100,6 @@ class EvalResult:
100
  with open(request_file, "r") as f:
101
  request = json.load(f)
102
  self.model_type = ModelType.from_str(request.get("model_type", ""))
103
- self.license = request.get("license", "?")
104
  self.likes = request.get("likes", 0)
105
  self.num_params = request.get("params", 0)
106
  self.date = request.get("submitted_time", "")
@@ -117,14 +116,10 @@ class EvalResult:
117
  AutoEvalColumn.precision.name: self.precision.value.name,
118
  AutoEvalColumn.model_type.name: self.model_type.value.name,
119
  AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
120
- AutoEvalColumn.architecture.name: self.architecture,
121
  AutoEvalColumn.model.name: make_clickable_model(self.full_model),
122
  AutoEvalColumn.revision.name: self.revision,
123
  # AutoEvalColumn.average.name: average,
124
- AutoEvalColumn.license.name: self.license,
125
- AutoEvalColumn.likes.name: self.likes,
126
  AutoEvalColumn.params.name: self.num_params,
127
- AutoEvalColumn.still_on_hub.name: self.still_on_hub,
128
  }
129
 
130
  for task in Tasks:
 
100
  with open(request_file, "r") as f:
101
  request = json.load(f)
102
  self.model_type = ModelType.from_str(request.get("model_type", ""))
 
103
  self.likes = request.get("likes", 0)
104
  self.num_params = request.get("params", 0)
105
  self.date = request.get("submitted_time", "")
 
116
  AutoEvalColumn.precision.name: self.precision.value.name,
117
  AutoEvalColumn.model_type.name: self.model_type.value.name,
118
  AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
 
119
  AutoEvalColumn.model.name: make_clickable_model(self.full_model),
120
  AutoEvalColumn.revision.name: self.revision,
121
  # AutoEvalColumn.average.name: average,
 
 
122
  AutoEvalColumn.params.name: self.num_params,
 
123
  }
124
 
125
  for task in Tasks:
src/submission/check_validity.py CHANGED
@@ -10,34 +10,30 @@ from huggingface_hub.hf_api import ModelInfo
10
  from transformers import AutoConfig
11
  from transformers.models.auto.tokenization_auto import AutoTokenizer
12
 
 
13
  def check_model_card(repo_id: str) -> tuple[bool, str]:
14
- """Checks if the model card and license exist and have been filled"""
15
  try:
16
  card = ModelCard.load(repo_id)
17
  except huggingface_hub.utils.EntryNotFoundError:
18
  return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
19
 
20
- # Enforce license metadata
21
- if card.data.license is None:
22
- if not ("license_name" in card.data and "license_link" in card.data):
23
- return False, (
24
- "License not found. Please add a license to your model card using the `license` metadata or a"
25
- " `license_name`/`license_link` pair."
26
- )
27
-
28
  # Enforce card content
29
  if len(card.text) < 200:
30
  return False, "Please add a description to your model card, it is too short."
31
 
32
  return True, ""
33
 
 
34
  def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
35
  """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
36
  try:
37
- config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
 
38
  if test_tokenizer:
39
  try:
40
- tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
 
41
  except ValueError as e:
42
  return (
43
  False,
@@ -66,14 +62,17 @@ def get_model_size(model_info: ModelInfo, precision: str):
66
  except (AttributeError, TypeError):
67
  return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
68
 
69
- size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
 
70
  model_size = size_factor * model_size
71
  return model_size
72
 
 
73
  def get_model_arch(model_info: ModelInfo):
74
  """Gets the model architecture from the configuration"""
75
  return model_info.config.get("architectures", "Unknown")
76
 
 
77
  def already_submitted_models(requested_models_dir: str) -> set[str]:
78
  """Gather a list of already submitted models to avoid duplicates"""
79
  depth = 1
@@ -88,12 +87,14 @@ def already_submitted_models(requested_models_dir: str) -> set[str]:
88
  continue
89
  with open(os.path.join(root, file), "r") as f:
90
  info = json.load(f)
91
- file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
 
92
 
93
  # Select organisation
94
  if info["model"].count("/") == 0 or "submitted_time" not in info:
95
  continue
96
  organisation, _ = info["model"].split("/")
97
- users_to_submission_dates[organisation].append(info["submitted_time"])
 
98
 
99
  return set(file_names), users_to_submission_dates
 
10
  from transformers import AutoConfig
11
  from transformers.models.auto.tokenization_auto import AutoTokenizer
12
 
13
+
14
  def check_model_card(repo_id: str) -> tuple[bool, str]:
15
+ """Checks if the model card exist and have been filled"""
16
  try:
17
  card = ModelCard.load(repo_id)
18
  except huggingface_hub.utils.EntryNotFoundError:
19
  return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
20
 
 
 
 
 
 
 
 
 
21
  # Enforce card content
22
  if len(card.text) < 200:
23
  return False, "Please add a description to your model card, it is too short."
24
 
25
  return True, ""
26
 
27
+
28
  def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
29
  """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
30
  try:
31
+ config = AutoConfig.from_pretrained(
32
+ model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
33
  if test_tokenizer:
34
  try:
35
+ tk = AutoTokenizer.from_pretrained(
36
+ model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
37
  except ValueError as e:
38
  return (
39
  False,
 
62
  except (AttributeError, TypeError):
63
  return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
64
 
65
+ size_factor = 8 if (
66
+ precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
67
  model_size = size_factor * model_size
68
  return model_size
69
 
70
+
71
  def get_model_arch(model_info: ModelInfo):
72
  """Gets the model architecture from the configuration"""
73
  return model_info.config.get("architectures", "Unknown")
74
 
75
+
76
  def already_submitted_models(requested_models_dir: str) -> set[str]:
77
  """Gather a list of already submitted models to avoid duplicates"""
78
  depth = 1
 
87
  continue
88
  with open(os.path.join(root, file), "r") as f:
89
  info = json.load(f)
90
+ file_names.append(
91
+ f"{info['model']}_{info['revision']}_{info['precision']}")
92
 
93
  # Select organisation
94
  if info["model"].count("/") == 0 or "submitted_time" not in info:
95
  continue
96
  organisation, _ = info["model"].split("/")
97
+ users_to_submission_dates[organisation].append(
98
+ info["submitted_time"])
99
 
100
  return set(file_names), users_to_submission_dates