Commit
·
0a9cf85
1
Parent(s):
38c018e
mnist diff vs flow matching
Browse files- .gitignore +182 -0
- app.py +172 -0
- requirements.txt +4 -0
- src/__init__.py +1 -0
- src/dataset.py +23 -0
- src/model.py +86 -0
- src/utils.py +14 -0
.gitignore
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
models/
|
2 |
+
*.jpg
|
3 |
+
*.png
|
4 |
+
*.pth
|
5 |
+
data/MNIST/
|
6 |
+
flagged/
|
7 |
+
demo/flagged/
|
8 |
+
|
9 |
+
# Byte-compiled / optimized / DLL files
|
10 |
+
__pycache__/
|
11 |
+
*.py[cod]
|
12 |
+
*$py.class
|
13 |
+
|
14 |
+
# C extensions
|
15 |
+
*.so
|
16 |
+
|
17 |
+
# Distribution / packaging
|
18 |
+
.Python
|
19 |
+
build/
|
20 |
+
develop-eggs/
|
21 |
+
dist/
|
22 |
+
downloads/
|
23 |
+
eggs/
|
24 |
+
.eggs/
|
25 |
+
lib/
|
26 |
+
lib64/
|
27 |
+
parts/
|
28 |
+
sdist/
|
29 |
+
var/
|
30 |
+
wheels/
|
31 |
+
share/python-wheels/
|
32 |
+
*.egg-info/
|
33 |
+
.installed.cfg
|
34 |
+
*.egg
|
35 |
+
MANIFEST
|
36 |
+
|
37 |
+
# PyInstaller
|
38 |
+
# Usually these files are written by a python script from a template
|
39 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
40 |
+
*.manifest
|
41 |
+
*.spec
|
42 |
+
|
43 |
+
# Installer logs
|
44 |
+
pip-log.txt
|
45 |
+
pip-delete-this-directory.txt
|
46 |
+
|
47 |
+
# Unit test / coverage reports
|
48 |
+
htmlcov/
|
49 |
+
.tox/
|
50 |
+
.nox/
|
51 |
+
.coverage
|
52 |
+
.coverage.*
|
53 |
+
.cache
|
54 |
+
nosetests.xml
|
55 |
+
coverage.xml
|
56 |
+
*.cover
|
57 |
+
*.py,cover
|
58 |
+
.hypothesis/
|
59 |
+
.pytest_cache/
|
60 |
+
cover/
|
61 |
+
|
62 |
+
# Translations
|
63 |
+
*.mo
|
64 |
+
*.pot
|
65 |
+
|
66 |
+
# Django stuff:
|
67 |
+
*.log
|
68 |
+
local_settings.py
|
69 |
+
db.sqlite3
|
70 |
+
db.sqlite3-journal
|
71 |
+
|
72 |
+
# Flask stuff:
|
73 |
+
instance/
|
74 |
+
.webassets-cache
|
75 |
+
|
76 |
+
# Scrapy stuff:
|
77 |
+
.scrapy
|
78 |
+
|
79 |
+
# Sphinx documentation
|
80 |
+
docs/_build/
|
81 |
+
|
82 |
+
# PyBuilder
|
83 |
+
.pybuilder/
|
84 |
+
target/
|
85 |
+
|
86 |
+
# Jupyter Notebook
|
87 |
+
.ipynb_checkpoints
|
88 |
+
|
89 |
+
# IPython
|
90 |
+
profile_default/
|
91 |
+
ipython_config.py
|
92 |
+
|
93 |
+
# pyenv
|
94 |
+
# For a library or package, you might want to ignore these files since the code is
|
95 |
+
# intended to run in multiple environments; otherwise, check them in:
|
96 |
+
# .python-version
|
97 |
+
|
98 |
+
# pipenv
|
99 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
100 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
101 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
102 |
+
# install all needed dependencies.
|
103 |
+
#Pipfile.lock
|
104 |
+
|
105 |
+
# UV
|
106 |
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
107 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
108 |
+
# commonly ignored for libraries.
|
109 |
+
#uv.lock
|
110 |
+
|
111 |
+
# poetry
|
112 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
113 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
114 |
+
# commonly ignored for libraries.
|
115 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
116 |
+
#poetry.lock
|
117 |
+
|
118 |
+
# pdm
|
119 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
120 |
+
#pdm.lock
|
121 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
122 |
+
# in version control.
|
123 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
124 |
+
.pdm.toml
|
125 |
+
.pdm-python
|
126 |
+
.pdm-build/
|
127 |
+
|
128 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
129 |
+
__pypackages__/
|
130 |
+
|
131 |
+
# Celery stuff
|
132 |
+
celerybeat-schedule
|
133 |
+
celerybeat.pid
|
134 |
+
|
135 |
+
# SageMath parsed files
|
136 |
+
*.sage.py
|
137 |
+
|
138 |
+
# Environments
|
139 |
+
.env
|
140 |
+
.venv
|
141 |
+
env/
|
142 |
+
venv/
|
143 |
+
ENV/
|
144 |
+
env.bak/
|
145 |
+
venv.bak/
|
146 |
+
|
147 |
+
# Spyder project settings
|
148 |
+
.spyderproject
|
149 |
+
.spyproject
|
150 |
+
|
151 |
+
# Rope project settings
|
152 |
+
.ropeproject
|
153 |
+
|
154 |
+
# mkdocs documentation
|
155 |
+
/site
|
156 |
+
|
157 |
+
# mypy
|
158 |
+
.mypy_cache/
|
159 |
+
.dmypy.json
|
160 |
+
dmypy.json
|
161 |
+
|
162 |
+
# Pyre type checker
|
163 |
+
.pyre/
|
164 |
+
|
165 |
+
# pytype static type analyzer
|
166 |
+
.pytype/
|
167 |
+
|
168 |
+
# Cython debug symbols
|
169 |
+
cython_debug/
|
170 |
+
|
171 |
+
# PyCharm
|
172 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
173 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
174 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
175 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
176 |
+
#.idea/
|
177 |
+
|
178 |
+
# Ruff stuff:
|
179 |
+
.ruff_cache/
|
180 |
+
|
181 |
+
# PyPI configuration file
|
182 |
+
.pypirc
|
app.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import sys
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
import gradio as gr
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
from src.model import ConditionalUNet
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
|
11 |
+
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
12 |
+
img_shape = (1, 28, 28)
|
13 |
+
|
14 |
+
|
15 |
+
def resize(image,size=(200,200)):
|
16 |
+
stretch_near = cv2.resize(image, size, interpolation = cv2.INTER_LINEAR)
|
17 |
+
return stretch_near
|
18 |
+
|
19 |
+
|
20 |
+
model_diff = ConditionalUNet().to(device)
|
21 |
+
model_path = hf_hub_download(repo_id="CristianLazoQuispe/MNIST_Diff_Flow_matching", filename="outputs/diffusion/diffusion_model.pth",
|
22 |
+
cache_dir="models")
|
23 |
+
print("Diff Downloaded!")
|
24 |
+
model_diff.load_state_dict(torch.load(model_path, map_location=device))
|
25 |
+
model_diff.eval()
|
26 |
+
|
27 |
+
|
28 |
+
model_flow = ConditionalUNet().to(device)
|
29 |
+
model_path = hf_hub_download(repo_id="CristianLazoQuispe/MNIST_Diff_Flow_matching", filename="outputs/flow_matching/flow_model.pth",
|
30 |
+
cache_dir="models")
|
31 |
+
print("Flow Downloaded!")
|
32 |
+
model_flow.load_state_dict(torch.load(model_path, map_location=device))
|
33 |
+
model_flow.eval()
|
34 |
+
|
35 |
+
@torch.no_grad()
|
36 |
+
def generate_diffusion_intermediates(label):
|
37 |
+
timesteps = 500
|
38 |
+
img_shape = (1, 28, 28)
|
39 |
+
betas = torch.linspace(1e-4, 0.02, timesteps)
|
40 |
+
alphas = 1.0 - betas
|
41 |
+
alphas_cumprod = torch.cumprod(alphas, dim=0).to(device)
|
42 |
+
|
43 |
+
x = torch.randn(1, *img_shape).to(device)
|
44 |
+
y = torch.tensor([label], dtype=torch.long, device=device)
|
45 |
+
noise_magnitudes = []
|
46 |
+
intermediates = [resize(((x + 1) / 2.0)[0][0].clamp(0, 1).cpu().numpy())]
|
47 |
+
|
48 |
+
for t in reversed(range(timesteps)):
|
49 |
+
t_tensor = torch.full((x.size(0),), t, device=device, dtype=torch.float)
|
50 |
+
noise_pred = model_diff(x, t_tensor, y)
|
51 |
+
x = (1 / alphas[t].sqrt()) * (x - noise_pred * betas[t] / (1 - alphas_cumprod[t]).sqrt() )
|
52 |
+
if t > 0:
|
53 |
+
noise = torch.randn(1, *img_shape).to(device)
|
54 |
+
v = (1 - alphas_cumprod[t - 1]) / (1 - alphas_cumprod[t]) * betas[t]
|
55 |
+
x += v.sqrt() * noise
|
56 |
+
|
57 |
+
x = x.clamp(-1, 1)
|
58 |
+
if t in [400, 300, 200, 100,0]:
|
59 |
+
#print("t:",t)
|
60 |
+
img_np = ((x + 1) / 2)[0, 0].cpu().numpy()
|
61 |
+
intermediates.append(resize(img_np))
|
62 |
+
|
63 |
+
if t in [499, 399, 299, 199,99,0]:
|
64 |
+
# Compute velocity magnitude and convert to numpy for visualization
|
65 |
+
v_mag = noise_pred[0, 0].abs().clamp(0, 3).cpu().numpy() # Clamp to max value for better contrast
|
66 |
+
v_mag = (v_mag - v_mag.min()) / (v_mag.max() - v_mag.min() + 1e-5)
|
67 |
+
vel_colored = plt.get_cmap("coolwarm")(v_mag)[:, :, :3] # (H,W,3)
|
68 |
+
vel_colored = (vel_colored * 255).astype(np.uint8)
|
69 |
+
noise_magnitudes.append(resize(vel_colored, (100, 100)))
|
70 |
+
|
71 |
+
return intermediates+noise_magnitudes
|
72 |
+
|
73 |
+
|
74 |
+
def generate_localized_noise(shape, radius=5):
|
75 |
+
"""Genera una imagen con ruido solo en un círculo en el centro."""
|
76 |
+
B, C, H, W = shape
|
77 |
+
assert C == 1, "Solo imágenes en escala de grises."
|
78 |
+
|
79 |
+
# Crear máscara circular
|
80 |
+
yy, xx = torch.meshgrid(torch.arange(H), torch.arange(W), indexing='ij')
|
81 |
+
center_y, center_x = H // 2, W // 2
|
82 |
+
mask = ((yy - center_y)**2 + (xx - center_x)**2) >= radius**2
|
83 |
+
mask = mask.float().unsqueeze(0).unsqueeze(0) # (1, 1, H, W)
|
84 |
+
|
85 |
+
# Aplicar máscara a ruido
|
86 |
+
noise = torch.randn(B, C, H, W)
|
87 |
+
localized_noise = noise * mask + -1*(1-mask) # solo hay ruido dentro del círculo
|
88 |
+
return localized_noise
|
89 |
+
|
90 |
+
|
91 |
+
@torch.no_grad()
|
92 |
+
def generate_flow_intermediates(label):
|
93 |
+
x = torch.randn(1, *img_shape).to(device)
|
94 |
+
#x = generate_localized_noise((1, 1, 28, 28), radius=12).to(device)
|
95 |
+
y = torch.full((1,), label, dtype=torch.long, device=device)
|
96 |
+
steps = 500
|
97 |
+
dt = 1.0 / steps
|
98 |
+
|
99 |
+
images = [(x + 1) / 2.0] # initial noise
|
100 |
+
vel_magnitudes = []
|
101 |
+
for i in range(steps):
|
102 |
+
|
103 |
+
t = torch.full((1,), i * dt, device=device)
|
104 |
+
v = model_flow(x, t, y)
|
105 |
+
x = x + v * dt
|
106 |
+
|
107 |
+
if i in [100,200,300,400,499]:
|
108 |
+
images.append((x + 1) / 2.0)
|
109 |
+
# Compute velocity magnitude and convert to numpy for visualization
|
110 |
+
if i in [0,100,200,300,400,499]:
|
111 |
+
v_mag = dt*v[0, 0].abs().clamp(0, 3).cpu().numpy() # Clamp to max value for better contrast
|
112 |
+
v_mag = (v_mag - v_mag.min()) / (v_mag.max() - v_mag.min() + 1e-5)
|
113 |
+
vel_colored = plt.get_cmap("coolwarm")(v_mag)[:, :, :3] # (H,W,3)
|
114 |
+
vel_colored = (vel_colored * 255).astype(np.uint8)
|
115 |
+
vel_magnitudes.append(resize(vel_colored, (100, 100)))
|
116 |
+
|
117 |
+
return [resize(images[0][0][0].clamp(0, 1).cpu().numpy())]+[resize(img[0][0].clamp(0, 1).cpu().numpy()) for img in images[-5:]]+vel_magnitudes
|
118 |
+
|
119 |
+
with gr.Blocks() as demo:
|
120 |
+
gr.Markdown("# Conditional MNIST Generation: Diffusion vs Flow Matching")
|
121 |
+
|
122 |
+
with gr.Tab("Diffusion"):
|
123 |
+
label_d = gr.Slider(0, 9, step=1, label="Digit Label")
|
124 |
+
btn_d = gr.Button("Generate")
|
125 |
+
with gr.Row():
|
126 |
+
outs_d = [
|
127 |
+
gr.Image(label="Noise"),
|
128 |
+
gr.Image(label="Diffusion t=400"),
|
129 |
+
gr.Image(label="Diffusion t=300"),
|
130 |
+
gr.Image(label="Diffusion t=200"),
|
131 |
+
gr.Image(label="Diffusion t=100"),
|
132 |
+
gr.Image(label="Diffusion t=0"),
|
133 |
+
]
|
134 |
+
with gr.Row():
|
135 |
+
#400, 300, 200, 100,0
|
136 |
+
flow_noise_imgs = [
|
137 |
+
gr.Image(label="Noise pred t=500"),
|
138 |
+
gr.Image(label="Noise pred t=400"),
|
139 |
+
gr.Image(label="Noise pred t=300"),
|
140 |
+
gr.Image(label="Noise pred t=200"),
|
141 |
+
gr.Image(label="Noise pred t=100"),
|
142 |
+
gr.Image(label="Noise pred t=0")
|
143 |
+
]
|
144 |
+
btn_d.click(fn=generate_diffusion_intermediates, inputs=label_d, outputs=outs_d+flow_noise_imgs)
|
145 |
+
|
146 |
+
with gr.Tab("Flow Matching"):
|
147 |
+
label_f = gr.Slider(0, 9, step=1, label="Digit Label")
|
148 |
+
btn_f = gr.Button("Generate")
|
149 |
+
with gr.Row():
|
150 |
+
outs_f = [
|
151 |
+
gr.Image(label="Noise"),
|
152 |
+
gr.Image(label="Flow step=100"),
|
153 |
+
gr.Image(label="Flow step=200"),
|
154 |
+
gr.Image(label="Flow step=300"),
|
155 |
+
gr.Image(label="Flow step=400"),
|
156 |
+
gr.Image(label="Flow step=499"),
|
157 |
+
]
|
158 |
+
with gr.Row():
|
159 |
+
#100,200,300,400,499
|
160 |
+
flow_vel_imgs = [
|
161 |
+
gr.Image(label="Velocity step=0"),
|
162 |
+
gr.Image(label="Velocity step=100"),
|
163 |
+
gr.Image(label="Velocity step=200"),
|
164 |
+
gr.Image(label="Velocity step=300"),
|
165 |
+
gr.Image(label="Velocity step=400"),
|
166 |
+
gr.Image(label="Velocity step=499")
|
167 |
+
]
|
168 |
+
|
169 |
+
btn_f.click(fn=generate_flow_intermediates, inputs=label_f, outputs=outs_f+flow_vel_imgs)
|
170 |
+
|
171 |
+
#demo.launch()
|
172 |
+
demo.launch(share=False, server_port=9070)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.44.1
|
2 |
+
torch==2.0.0
|
3 |
+
opencv-python==4.6.0.66
|
4 |
+
numpy==1.26.4
|
src/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from . import *
|
src/dataset.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torchvision import datasets, transforms, utils
|
6 |
+
from torch.utils.data import DataLoader
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
def get_data(batch_size):
|
12 |
+
# --- Dataset ---
|
13 |
+
transform = transforms.Compose([
|
14 |
+
transforms.ToTensor(),
|
15 |
+
transforms.Lambda(lambda x: x * 2 - 1)
|
16 |
+
])
|
17 |
+
full_dataset = datasets.MNIST(root='data', train=True, download=True, transform=transform)
|
18 |
+
train_size = int(0.9 * len(full_dataset))
|
19 |
+
val_size = len(full_dataset) - train_size
|
20 |
+
train_dataset, val_dataset = torch.utils.data.random_split(full_dataset, [train_size, val_size])
|
21 |
+
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
22 |
+
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
|
23 |
+
return train_loader, val_loader
|
src/model.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# conditional_mnist_diffusion_flow.py
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torchvision import datasets, transforms, utils
|
6 |
+
from torch.utils.data import DataLoader
|
7 |
+
from tqdm import tqdm
|
8 |
+
import os
|
9 |
+
import sys
|
10 |
+
import numpy as np
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
|
13 |
+
|
14 |
+
# --- Utilidades ---
|
15 |
+
def timestep_embedding(timesteps, dim):
|
16 |
+
half = dim // 2
|
17 |
+
freqs = torch.exp(-torch.arange(half, dtype=torch.float32) * torch.log(torch.tensor(10000.0)) / half)
|
18 |
+
args = timesteps[:, None].float() * freqs[None]
|
19 |
+
emb = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
20 |
+
if dim % 2:
|
21 |
+
emb = torch.cat([emb, torch.zeros_like(emb[:, :1])], dim=-1)
|
22 |
+
return emb
|
23 |
+
|
24 |
+
|
25 |
+
# --- Bloque residual con condición ---
|
26 |
+
class ResidualBlock(nn.Module):
|
27 |
+
def __init__(self, in_channels, out_channels, emb_channels):
|
28 |
+
super().__init__()
|
29 |
+
self.norm1 = nn.GroupNorm(1, in_channels)
|
30 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, 3, padding=1)
|
31 |
+
self.emb_proj = nn.Linear(emb_channels, out_channels)
|
32 |
+
self.norm2 = nn.GroupNorm(1, out_channels)
|
33 |
+
self.dropout = nn.Dropout(0.1)
|
34 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, 3, padding=1)
|
35 |
+
self.skip = nn.Conv2d(in_channels, out_channels, 1) if in_channels != out_channels else nn.Identity()
|
36 |
+
|
37 |
+
def forward(self, x, emb):
|
38 |
+
h = F.silu(self.norm1(x))
|
39 |
+
h = self.conv1(h)
|
40 |
+
h += self.emb_proj(F.silu(emb))[:, :, None, None]
|
41 |
+
h = F.silu(self.norm2(h))
|
42 |
+
h = self.dropout(h)
|
43 |
+
h = self.conv2(h)
|
44 |
+
return h + self.skip(x)
|
45 |
+
|
46 |
+
|
47 |
+
# --- UNet condicional ---
|
48 |
+
class ConditionalUNet(nn.Module):
|
49 |
+
def __init__(self, num_classes=10, base_channels=64):
|
50 |
+
super().__init__()
|
51 |
+
self.time_mlp = nn.Sequential(
|
52 |
+
nn.Linear(1, base_channels),
|
53 |
+
nn.SiLU(),
|
54 |
+
nn.Linear(base_channels, base_channels),
|
55 |
+
)
|
56 |
+
self.label_emb = nn.Embedding(num_classes, base_channels)
|
57 |
+
|
58 |
+
self.enc1 = ResidualBlock(1, base_channels, base_channels)
|
59 |
+
self.enc2 = ResidualBlock(base_channels, base_channels * 2, base_channels)
|
60 |
+
self.down = nn.Conv2d(base_channels * 2, base_channels * 2, 4, stride=2, padding=1)
|
61 |
+
|
62 |
+
self.mid = ResidualBlock(base_channels * 2, base_channels * 2, base_channels)
|
63 |
+
|
64 |
+
self.up = nn.ConvTranspose2d(base_channels * 2, base_channels * 2, 4, stride=2, padding=1)
|
65 |
+
self.dec2 = ResidualBlock(base_channels * 4, base_channels, base_channels)
|
66 |
+
self.dec1 = ResidualBlock(base_channels * 2, base_channels, base_channels)
|
67 |
+
|
68 |
+
self.out_norm = nn.GroupNorm(8, base_channels)
|
69 |
+
self.out_conv = nn.Conv2d(base_channels, 1, 3, padding=1)
|
70 |
+
|
71 |
+
def forward(self, x, t, y):
|
72 |
+
emb_t = self.time_mlp(t.view(-1, 1))
|
73 |
+
emb_y = self.label_emb(y)
|
74 |
+
emb = emb_t + emb_y
|
75 |
+
|
76 |
+
x1 = self.enc1(x, emb)
|
77 |
+
x2 = self.enc2(x1, emb)
|
78 |
+
x3 = self.down(x2)
|
79 |
+
m = self.mid(x3, emb)
|
80 |
+
u = self.up(m)
|
81 |
+
|
82 |
+
d2 = self.dec2(torch.cat([u, x2], dim=1), emb)
|
83 |
+
d1 = self.dec1(torch.cat([d2, x1], dim=1), emb)
|
84 |
+
|
85 |
+
out = self.out_conv(F.silu(self.out_norm(d1)))
|
86 |
+
return out
|
src/utils.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import random
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
def set_seed(seed):
|
8 |
+
random.seed(seed)
|
9 |
+
np.random.seed(seed)
|
10 |
+
os.environ["PYTHONHASHSEED"] = str(seed)
|
11 |
+
torch.manual_seed(seed)
|
12 |
+
torch.cuda.manual_seed(seed)
|
13 |
+
torch.cuda.manual_seed_all(seed)
|
14 |
+
torch.backends.cudnn.deterministic = True
|