Commit
Β·
31fff2a
1
Parent(s):
74ec8db
load model in session
Browse files- app.py +7 -4
- src/demo.py +36 -0
app.py
CHANGED
@@ -4,7 +4,7 @@ import logging
|
|
4 |
import gradio as gr
|
5 |
logging.basicConfig(level=logging.INFO)
|
6 |
from src.utils import generate_centered_gaussian_noise
|
7 |
-
from src.demo import resize,plot_flow,
|
8 |
|
9 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
10 |
img_shape = (1, 28, 28)
|
@@ -16,14 +16,16 @@ betas = torch.linspace(1e-4, 0.02, timesteps)
|
|
16 |
alphas = 1.0 - betas
|
17 |
alphas_cumprod = torch.cumprod(alphas, dim=0).to(device)
|
18 |
|
19 |
-
model_diff,model_flow_standard,model_flow_localized = load_models(ENV,device=device)
|
20 |
|
|
|
|
|
21 |
|
22 |
@torch.no_grad()
|
23 |
def generate_diffusion_intermediates_streaming(label):
|
24 |
logging.info("π Starting Diffusion Generation")
|
25 |
total_start = time.time()
|
26 |
|
|
|
27 |
|
28 |
|
29 |
x = torch.randn(1, *img_shape).to(device)
|
@@ -88,10 +90,11 @@ def generate_flow_intermediates_streaming(label, noise_type):
|
|
88 |
# Select noise and model
|
89 |
if noise_type == "Localized":
|
90 |
x = generate_centered_gaussian_noise((1, *img_shape)).to(device)
|
91 |
-
model_flow =
|
|
|
92 |
else:
|
93 |
x = torch.randn(1, *img_shape).to(device)
|
94 |
-
model_flow =
|
95 |
|
96 |
y = torch.full((1,), label, dtype=torch.long, device=device)
|
97 |
steps = 50
|
|
|
4 |
import gradio as gr
|
5 |
logging.basicConfig(level=logging.INFO)
|
6 |
from src.utils import generate_centered_gaussian_noise
|
7 |
+
from src.demo import resize,plot_flow,plot_diff,load_model_diff,load_model_flow_localized,load_model_flow_standard
|
8 |
|
9 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
10 |
img_shape = (1, 28, 28)
|
|
|
16 |
alphas = 1.0 - betas
|
17 |
alphas_cumprod = torch.cumprod(alphas, dim=0).to(device)
|
18 |
|
|
|
19 |
|
20 |
+
#model_diff,model_flow_standard,model_flow_localized = load_models(ENV,device=device)
|
21 |
+
#not catching models because of memory limit in free deployment
|
22 |
|
23 |
@torch.no_grad()
|
24 |
def generate_diffusion_intermediates_streaming(label):
|
25 |
logging.info("π Starting Diffusion Generation")
|
26 |
total_start = time.time()
|
27 |
|
28 |
+
model_diff = load_model_diff(ENV,device=device)
|
29 |
|
30 |
|
31 |
x = torch.randn(1, *img_shape).to(device)
|
|
|
90 |
# Select noise and model
|
91 |
if noise_type == "Localized":
|
92 |
x = generate_centered_gaussian_noise((1, *img_shape)).to(device)
|
93 |
+
model_flow = load_model_flow_localized(ENV,device=device)
|
94 |
+
|
95 |
else:
|
96 |
x = torch.randn(1, *img_shape).to(device)
|
97 |
+
model_flow = load_model_flow_standard(ENV,device=device)
|
98 |
|
99 |
y = torch.full((1,), label, dtype=torch.long, device=device)
|
100 |
steps = 50
|
src/demo.py
CHANGED
@@ -31,6 +31,42 @@ def load_models(ENV,device):
|
|
31 |
model_flow_localized.eval()
|
32 |
|
33 |
return model_diff_standard,model_flow_standard,model_flow_localized
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def resize(image,size=(200,200)):
|
35 |
stretch_near = cv2.resize(image, size, interpolation = cv2.INTER_LINEAR)
|
36 |
return stretch_near
|
|
|
31 |
model_flow_localized.eval()
|
32 |
|
33 |
return model_diff_standard,model_flow_standard,model_flow_localized
|
34 |
+
|
35 |
+
|
36 |
+
def load_model_diff(ENV,device):
|
37 |
+
if ENV=="DEPLOY":
|
38 |
+
model_path = hf_hub_download(repo_id="CristianLazoQuispe/MNIST_Diff_Flow_matching", filename="outputs/diffusion/diffusion_model.pth",cache_dir="models")
|
39 |
+
else:
|
40 |
+
model_path = "outputs/diffusion/diffusion_model.pth"
|
41 |
+
print("Diff Downloaded!")
|
42 |
+
model_diff_standard = ConditionalUNet().to(device)
|
43 |
+
model_diff_standard.load_state_dict(torch.load(model_path, map_location=device))
|
44 |
+
model_diff_standard.eval()
|
45 |
+
return model_diff_standard
|
46 |
+
|
47 |
+
def load_model_flow_standard(ENV,device):
|
48 |
+
if ENV=="DEPLOY":
|
49 |
+
model_path_standard = hf_hub_download(repo_id="CristianLazoQuispe/MNIST_Diff_Flow_matching", filename="outputs/flow_matching/flow_model.pth",cache_dir="models")
|
50 |
+
else:
|
51 |
+
model_path_standard = "outputs/flow_matching/flow_model.pth"
|
52 |
+
print("Flow Downloaded!")
|
53 |
+
model_flow_standard = ConditionalUNet().to(device)
|
54 |
+
model_flow_standard.load_state_dict(torch.load(model_path_standard, map_location=device))
|
55 |
+
model_flow_standard.eval()
|
56 |
+
return model_flow_standard
|
57 |
+
|
58 |
+
def load_model_flow_localized(ENV,device):
|
59 |
+
if ENV=="DEPLOY":
|
60 |
+
model_path_localized = hf_hub_download(repo_id="CristianLazoQuispe/MNIST_Diff_Flow_matching", filename="outputs/flow_matching/flow_model_localized_noise.pth",cache_dir="models")
|
61 |
+
else:
|
62 |
+
model_path_localized = "outputs/flow_matching/flow_model_localized_noise.pth"
|
63 |
+
print("Flow Downloaded!")
|
64 |
+
model_flow_localized = ConditionalUNet().to(device)
|
65 |
+
model_flow_localized.load_state_dict(torch.load(model_path_localized, map_location=device))
|
66 |
+
model_flow_localized.eval()
|
67 |
+
return model_flow_localized
|
68 |
+
|
69 |
+
|
70 |
def resize(image,size=(200,200)):
|
71 |
stretch_near = cv2.resize(image, size, interpolation = cv2.INTER_LINEAR)
|
72 |
return stretch_near
|