Commit
·
fc76090
1
Parent(s):
f870389
continous streaming generation
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ from src.model import ConditionalUNet
|
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
import time
|
11 |
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
12 |
-
device = 'cpu'
|
13 |
img_shape = (1, 28, 28)
|
14 |
|
15 |
|
@@ -73,13 +73,20 @@ def generate_diffusion_intermediates_streaming(label):
|
|
73 |
outputs[step_idx] = resize(vel_colored)
|
74 |
yield tuple(outputs)
|
75 |
|
|
|
|
|
76 |
if t in [400, 300, 200, 100, 1, 0]:
|
77 |
step_idx = {400: 1, 300: 2, 200: 3, 100: 4, 1: 5, 0 :12}[t]
|
78 |
if t==0:
|
79 |
-
outputs[step_idx] = resize(((x + 1) / 2.0)[0, 0].cpu().numpy(),(
|
80 |
else:
|
81 |
outputs[step_idx] = resize(((x + 1) / 2.0)[0, 0].cpu().numpy())
|
82 |
yield tuple(outputs)
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
|
85 |
def generate_localized_noise(shape, radius=5):
|
@@ -127,9 +134,9 @@ def generate_flow_intermediates_streaming(label):
|
|
127 |
v = model_flow(x, t, y)
|
128 |
x = x + v * dt
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
step_idx = {10: 1, 20: 2, 30: 3, 40: 4, 48: 5,
|
133 |
if i==49:
|
134 |
outputs[step_idx] = resize(((x + 1) / 2.0)[0, 0].clamp(0, 1).cpu().numpy(),(300,300))
|
135 |
else:
|
@@ -146,6 +153,12 @@ def generate_flow_intermediates_streaming(label):
|
|
146 |
step_idx = {0: 6, 11: 7, 21: 8, 31: 9, 41: 10, 49:11}[i]
|
147 |
outputs[step_idx] = resize(vel_colored)
|
148 |
yield tuple(outputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
|
151 |
with gr.Blocks() as demo:
|
@@ -207,5 +220,5 @@ with gr.Blocks() as demo:
|
|
207 |
]
|
208 |
btn_f.click(fn=generate_flow_intermediates_streaming, inputs=label_f, outputs=outs_f+flow_vel_imgs+flow_result_imgs)
|
209 |
|
210 |
-
|
211 |
-
demo.launch(share=False, server_port=9071)
|
|
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
import time
|
11 |
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
12 |
+
#device = 'cpu'
|
13 |
img_shape = (1, 28, 28)
|
14 |
|
15 |
|
|
|
73 |
outputs[step_idx] = resize(vel_colored)
|
74 |
yield tuple(outputs)
|
75 |
|
76 |
+
outputs[12] = resize(((x + 1) / 2.0)[0, 0].cpu().numpy(),(300,300))
|
77 |
+
|
78 |
if t in [400, 300, 200, 100, 1, 0]:
|
79 |
step_idx = {400: 1, 300: 2, 200: 3, 100: 4, 1: 5, 0 :12}[t]
|
80 |
if t==0:
|
81 |
+
outputs[step_idx] = resize(((x + 1) / 2.0)[0, 0].cpu().numpy(),(300,300))
|
82 |
else:
|
83 |
outputs[step_idx] = resize(((x + 1) / 2.0)[0, 0].cpu().numpy())
|
84 |
yield tuple(outputs)
|
85 |
+
if t % 10 == 0:
|
86 |
+
yield tuple(outputs)
|
87 |
+
time.sleep(0.05)
|
88 |
+
#time.sleep(0.1)
|
89 |
+
yield tuple(outputs)
|
90 |
|
91 |
|
92 |
def generate_localized_noise(shape, radius=5):
|
|
|
134 |
v = model_flow(x, t, y)
|
135 |
x = x + v * dt
|
136 |
|
137 |
+
outputs[12] = resize(((x + 1) / 2.0)[0, 0].clamp(0, 1).cpu().numpy(),(300,300))
|
138 |
+
if i in [10,20,30,40,48,49]: #
|
139 |
+
step_idx = {10: 1, 20: 2, 30: 3, 40: 4, 48: 5,49:12}[i] #,
|
140 |
if i==49:
|
141 |
outputs[step_idx] = resize(((x + 1) / 2.0)[0, 0].clamp(0, 1).cpu().numpy(),(300,300))
|
142 |
else:
|
|
|
153 |
step_idx = {0: 6, 11: 7, 21: 8, 31: 9, 41: 10, 49:11}[i]
|
154 |
outputs[step_idx] = resize(vel_colored)
|
155 |
yield tuple(outputs)
|
156 |
+
if t % 10 == 0:
|
157 |
+
yield tuple(outputs)
|
158 |
+
time.sleep(0.05)
|
159 |
+
|
160 |
+
#time.sleep(0.1)
|
161 |
+
yield tuple(outputs)
|
162 |
|
163 |
|
164 |
with gr.Blocks() as demo:
|
|
|
220 |
]
|
221 |
btn_f.click(fn=generate_flow_intermediates_streaming, inputs=label_f, outputs=outs_f+flow_vel_imgs+flow_result_imgs)
|
222 |
|
223 |
+
demo.launch()
|
224 |
+
#demo.launch(share=False, server_port=9071)
|