|
|
|
""" |
|
📚 ZeroGPU Multilingual PDF Text Extractor |
|
========================================= |
|
|
|
Features |
|
-------- |
|
• **Native / OCR / Hybrid** modes |
|
• **Language chooser** (multiselect) with EasyOCR model caching |
|
• **ZeroGPU** pay‑as‑you‑go: GPU allocated *only* while OCR runs |
|
• **Streamed output** page‑by‑page + real‑time progress bar |
|
• **Download‑as‑TXT** button |
|
• Basic **error handling** (oversize PDF, CUDA OOM, unsupported language) |
|
|
|
Maintained as a single file (`app.py`) for simplicity. |
|
""" |
|
|
|
import os, tempfile, concurrent.futures, itertools, functools, uuid |
|
from typing import List, Tuple |
|
|
|
import fitz |
|
import pdfplumber |
|
import torch |
|
import gradio as gr |
|
import spaces |
|
import easyocr |
|
|
|
|
|
|
|
|
|
_READERS = {} |
|
|
|
def get_reader(lang_codes: Tuple[str, ...]) -> "easyocr.Reader": |
|
key = tuple(sorted(lang_codes)) |
|
if key not in _READERS: |
|
try: |
|
_READERS[key] = easyocr.Reader(list(key), gpu=torch.cuda.is_available()) |
|
except ValueError as e: |
|
raise gr.Error(str(e)) |
|
return _READERS[key] |
|
|
|
|
|
|
|
|
|
|
|
@spaces.GPU(duration=600) |
|
def run_ocr(pdf_path: str, page_ids: List[int], lang_codes: Tuple[str, ...]) -> List[Tuple[int, str]]: |
|
"""OCR designated pages and return list[(page_num, text)].""" |
|
reader = get_reader(lang_codes) |
|
doc = fitz.open(pdf_path) |
|
results = [] |
|
|
|
def ocr_single(idx: int): |
|
pg = doc[idx - 1] |
|
|
|
max_side = max(pg.rect.width, pg.rect.height) |
|
scale = 2 if max_side <= 600 else 1.5 |
|
try: |
|
pix = pg.get_pixmap(matrix=fitz.Matrix(scale, scale)) |
|
except RuntimeError: |
|
|
|
pix = pg.get_pixmap() |
|
img_path = os.path.join(tempfile.gettempdir(), f"ocr_{uuid.uuid4().hex}.png") |
|
pix.save(img_path) |
|
|
|
|
|
if len(lang_codes) == 1: |
|
tmp = reader.readtext(img_path, detail=1) |
|
txt_lines = [text for _, text, conf in tmp if conf > 0.2] |
|
else: |
|
txt_lines = reader.readtext(img_path, detail=0) |
|
|
|
os.remove(img_path) |
|
return idx, "\n".join(txt_lines) |
|
|
|
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as ex: |
|
futures = {ex.submit(ocr_single, i): i for i in page_ids} |
|
for fut in concurrent.futures.as_completed(futures): |
|
results.append(fut.result()) |
|
|
|
return results |
|
|
|
|
|
|
|
|
|
|
|
def extract_native(pdf_path: str, x_tol: float = 1) -> List[Tuple[int, str]]: |
|
with pdfplumber.open(pdf_path) as pdf: |
|
out = [] |
|
for idx, page in enumerate(pdf.pages, start=1): |
|
txt = page.extract_text(x_tolerance=x_tol) or "" |
|
out.append((idx, txt)) |
|
return out |
|
|
|
|
|
|
|
|
|
|
|
def pipeline(pdf_file, langs, mode): |
|
if pdf_file is None: |
|
raise gr.Error("Please upload a PDF.") |
|
|
|
|
|
max_size = 200 * 1024 * 1024 |
|
if os.path.getsize(pdf_file.name) > max_size: |
|
raise gr.Error("PDF larger than 200 MB. Please split the document.") |
|
|
|
langs = langs if isinstance(langs, list) else [langs] |
|
lang_tuple = tuple(langs) |
|
|
|
native_chunks, ocr_chunks = [], [] |
|
combined_text = "" |
|
|
|
|
|
tmp_txt = tempfile.NamedTemporaryFile(delete=False, suffix=".txt") |
|
tmp_txt_path = tmp_txt.name |
|
|
|
|
|
with gr.Progress(track_tqdm=False) as prog: |
|
native_pages = extract_native(pdf_file.name) if mode in ("native", "auto") else [] |
|
total_pages = len(native_pages) if native_pages else fitz.open(pdf_file.name).page_count |
|
prog.tqdm(total=total_pages) |
|
|
|
|
|
pending_ocr = [] |
|
|
|
for idx in range(1, total_pages + 1): |
|
native_txt = "" |
|
if mode in ("native", "auto"): |
|
native_txt = native_pages[idx - 1][1] |
|
|
|
if native_txt.strip(): |
|
chunk = f"--- Page {idx} (native) ---\n{native_txt}\n" |
|
native_chunks.append(chunk) |
|
combined_text += chunk |
|
tmp_txt.write(chunk.encode("utf-8")) |
|
yield combined_text, None |
|
else: |
|
if mode == "auto": |
|
pending_ocr.append(idx) |
|
elif mode == "ocr": |
|
pending_ocr.append(idx) |
|
prog.update(advance=1) |
|
|
|
|
|
if pending_ocr: |
|
try: |
|
ocr_results = run_ocr(pdf_file.name, pending_ocr, lang_tuple) |
|
except RuntimeError as e: |
|
|
|
ocr_results = run_ocr(pdf_file.name, pending_ocr, lang_tuple) |
|
|
|
for idx, text in sorted(ocr_results, key=lambda x: x[0]): |
|
if text.strip(): |
|
chunk = f"--- Page {idx} (OCR) ---\n{text}\n" |
|
ocr_chunks.append(chunk) |
|
combined_text += chunk |
|
tmp_txt.write(chunk.encode("utf-8")) |
|
yield combined_text, None |
|
|
|
tmp_txt.close() |
|
|
|
yield combined_text or "⚠️ No text detected in the document.", tmp_txt_path |
|
|
|
|
|
|
|
|
|
|
|
THEME = gr.themes.Base( |
|
primary_hue="purple", |
|
radius_size=gr.themes.sizes.radius_xl, |
|
spacing_size=gr.themes.sizes.spacing_md, |
|
) |
|
|
|
EXAMPLE_URLS = [ |
|
"https://arxiv.org/pdf/2106.14834.pdf", |
|
"https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf" |
|
] |
|
|
|
with gr.Blocks(theme=THEME, title="ZeroGPU PDF OCR") as demo: |
|
gr.Markdown("## 📚 ZeroGPU Multilingual PDF Text Extractor") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1, min_width=250): |
|
file_in = gr.File(label="Upload PDF", file_types=[".pdf"]) |
|
lang_in = gr.Dropdown( |
|
["en", "nl", "de", "fr", "es", "it", "pt", "ru", "zh_cn", "ja", "ar"], |
|
multiselect=True, |
|
value=["en"], |
|
label="OCR language(s)" |
|
) |
|
mode_in = gr.Radio( |
|
["native", "ocr", "auto"], |
|
value="auto", |
|
label="Document type", |
|
info="native = text only · ocr = images only · auto = mixed", |
|
) |
|
run_btn = gr.Button("Extract", variant="primary") |
|
|
|
with gr.Column(scale=2): |
|
txt_out = gr.Textbox( |
|
label="Extracted Text (streaming)", |
|
lines=18, |
|
show_copy_button=True, |
|
) |
|
download_out = gr.File(label="Download .txt") |
|
|
|
run_btn.click( |
|
fn=pipeline, |
|
inputs=[file_in, lang_in, mode_in], |
|
outputs=[txt_out, download_out], |
|
) |
|
|
|
gr.Examples( |
|
EXAMPLE_URLS, |
|
inputs=file_in, |
|
label="Quick‑test PDFs", |
|
fn=None, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|