File size: 8,953 Bytes
e86199a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import networkx as nx
from typing import List, Dict, Any, Tuple
import json

class GraphBuilder:
    def __init__(self):
        self.graph = nx.DiGraph()  # Directed graph for relationships
    
    def build_graph(self, entities: List[Dict[str, Any]], relationships: List[Dict[str, Any]]) -> nx.DiGraph:
        """Build NetworkX graph from entities and relationships."""
        self.graph.clear()
        
        # Add entities as nodes
        for entity in entities:
            node_id = entity.get("name", "").strip()
            if node_id:
                self.graph.add_node(
                    node_id,
                    type=entity.get("type", "UNKNOWN"),
                    importance=entity.get("importance", 0.0),
                    description=entity.get("description", ""),
                    size=self._calculate_node_size(entity.get("importance", 0.0))
                )
        
        # Add relationships as edges
        for relationship in relationships:
            source = relationship.get("source", "").strip()
            target = relationship.get("target", "").strip()
            rel_type = relationship.get("relationship", "related_to")
            description = relationship.get("description", "")
            
            if source and target and source in self.graph.nodes and target in self.graph.nodes:
                self.graph.add_edge(
                    source,
                    target,
                    relationship=rel_type,
                    description=description,
                    weight=1.0
                )
        
        return self.graph
    
    def _calculate_node_size(self, importance: float) -> int:
        """Calculate node size based on importance score."""
        # Map importance (0.0-1.0) to node size (10-50)
        min_size, max_size = 10, 50
        return int(min_size + (max_size - min_size) * importance)
    
    def get_graph_statistics(self) -> Dict[str, Any]:
        """Get basic statistics about the graph."""
        if not self.graph.nodes():
            return {
                "num_nodes": 0,
                "num_edges": 0,
                "density": 0.0,
                "is_connected": False,
                "num_components": 0
            }
        
        # Convert to undirected for connectivity analysis
        undirected = self.graph.to_undirected()
        
        return {
            "num_nodes": self.graph.number_of_nodes(),
            "num_edges": self.graph.number_of_edges(),
            "density": nx.density(self.graph),
            "is_connected": nx.is_connected(undirected),
            "num_components": nx.number_connected_components(undirected),
            "avg_degree": sum(dict(self.graph.degree()).values()) / self.graph.number_of_nodes() if self.graph.number_of_nodes() > 0 else 0
        }
    
    def get_central_nodes(self, top_k: int = 5) -> List[Tuple[str, float]]:
        """Get most central nodes using various centrality measures."""
        if not self.graph.nodes():
            return []
        
        centralities = {}
        
        # Degree centrality
        degree_centrality = nx.degree_centrality(self.graph)
        
        # Betweenness centrality (if graph has enough nodes)
        if self.graph.number_of_nodes() > 2:
            betweenness_centrality = nx.betweenness_centrality(self.graph)
        else:
            betweenness_centrality = {node: 0.0 for node in self.graph.nodes()}
        
        # PageRank
        try:
            pagerank = nx.pagerank(self.graph)
        except:
            pagerank = {node: 1.0/self.graph.number_of_nodes() for node in self.graph.nodes()}
        
        # Combine centrality measures
        for node in self.graph.nodes():
            importance = self.graph.nodes[node].get('importance', 0.0)
            combined_score = (
                0.3 * degree_centrality.get(node, 0.0) +
                0.3 * betweenness_centrality.get(node, 0.0) +
                0.2 * pagerank.get(node, 0.0) +
                0.2 * importance
            )
            centralities[node] = combined_score
        
        # Sort by centrality score
        sorted_nodes = sorted(centralities.items(), key=lambda x: x[1], reverse=True)
        return sorted_nodes[:top_k]
    
    def filter_graph(self, 
                    entity_types: List[str] = None, 
                    min_importance: float = None,
                    relationship_types: List[str] = None) -> nx.DiGraph:
        """Filter graph by entity types, importance, or relationship types."""
        filtered_graph = self.graph.copy()
        
        # Filter nodes by type and importance
        nodes_to_remove = []
        for node, data in filtered_graph.nodes(data=True):
            if entity_types and data.get('type') not in entity_types:
                nodes_to_remove.append(node)
            elif min_importance and data.get('importance', 0.0) < min_importance:
                nodes_to_remove.append(node)
        
        filtered_graph.remove_nodes_from(nodes_to_remove)
        
        # Filter edges by relationship type
        if relationship_types:
            edges_to_remove = []
            for u, v, data in filtered_graph.edges(data=True):
                if data.get('relationship') not in relationship_types:
                    edges_to_remove.append((u, v))
            filtered_graph.remove_edges_from(edges_to_remove)
        
        return filtered_graph
    
    def export_graph(self, format_type: str = "json") -> str:
        """Export graph in various formats."""
        if format_type.lower() == "json":
            return self._export_json()
        elif format_type.lower() == "graphml":
            return self._export_graphml()
        elif format_type.lower() == "gexf":
            return self._export_gexf()
        else:
            raise ValueError(f"Unsupported export format: {format_type}")
    
    def _export_json(self) -> str:
        """Export graph as JSON."""
        data = {
            "nodes": [],
            "edges": []
        }
        
        # Export nodes
        for node, attrs in self.graph.nodes(data=True):
            node_data = {"id": node}
            node_data.update(attrs)
            data["nodes"].append(node_data)
        
        # Export edges
        for u, v, attrs in self.graph.edges(data=True):
            edge_data = {"source": u, "target": v}
            edge_data.update(attrs)
            data["edges"].append(edge_data)
        
        return json.dumps(data, indent=2)
    
    def _export_graphml(self) -> str:
        """Export graph as GraphML."""
        import io
        output = io.StringIO()
        nx.write_graphml(self.graph, output)
        return output.getvalue()
    
    def _export_gexf(self) -> str:
        """Export graph as GEXF."""
        import io
        output = io.StringIO()
        nx.write_gexf(self.graph, output)
        return output.getvalue()
    
    def get_subgraph_around_node(self, node: str, radius: int = 1) -> nx.DiGraph:
        """Get subgraph within specified radius of a node."""
        if node not in self.graph:
            return nx.DiGraph()
        
        # Get nodes within radius
        nodes_in_radius = set([node])
        current_nodes = set([node])
        
        for _ in range(radius):
            next_nodes = set()
            for n in current_nodes:
                # Add neighbors (both incoming and outgoing)
                next_nodes.update(self.graph.successors(n))
                next_nodes.update(self.graph.predecessors(n))
            
            nodes_in_radius.update(next_nodes)
            current_nodes = next_nodes - nodes_in_radius
            
            if not current_nodes:
                break
        
        return self.graph.subgraph(nodes_in_radius).copy()
    
    def get_shortest_path(self, source: str, target: str) -> List[str]:
        """Get shortest path between two nodes."""
        try:
            # Convert to undirected for path finding
            undirected = self.graph.to_undirected()
            return nx.shortest_path(undirected, source, target)
        except (nx.NetworkXNoPath, nx.NodeNotFound):
            return []
    
    def get_node_info(self, node: str) -> Dict[str, Any]:
        """Get detailed information about a specific node."""
        if node not in self.graph:
            return {}
        
        node_data = dict(self.graph.nodes[node])
        
        # Add connectivity information
        predecessors = list(self.graph.predecessors(node))
        successors = list(self.graph.successors(node))
        
        node_data.update({
            "in_degree": self.graph.in_degree(node),
            "out_degree": self.graph.out_degree(node),
            "predecessors": predecessors,
            "successors": successors,
            "total_connections": len(predecessors) + len(successors)
        })
        
        return node_data