File size: 12,703 Bytes
e86199a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import streamlit as st
import tempfile
import os
import json
from typing import List, Dict, Any, Optional, Tuple
import traceback
# Import our modules
from src.document_processor import DocumentProcessor
from src.llm_extractor import LLMExtractor
from src.graph_builder import GraphBuilder
from src.visualizer import GraphVisualizer
from config.settings import Config
# Page config
st.set_page_config(
page_title="Knowledge Graph Extraction",
page_icon="πΈοΈ",
layout="wide"
)
# Initialize components
@st.cache_resource
def initialize_components():
config = Config()
doc_processor = DocumentProcessor()
llm_extractor = LLMExtractor()
graph_builder = GraphBuilder()
visualizer = GraphVisualizer()
return config, doc_processor, llm_extractor, graph_builder, visualizer
config, doc_processor, llm_extractor, graph_builder, visualizer = initialize_components()
def process_uploaded_files(uploaded_files, api_key, batch_mode, layout_type,
show_labels, show_edge_labels, min_importance, entity_types_filter):
"""Process uploaded files and extract knowledge graph."""
try:
# Update API key
if api_key.strip():
config.OPENROUTER_API_KEY = api_key.strip()
llm_extractor.config.OPENROUTER_API_KEY = api_key.strip()
llm_extractor.headers["Authorization"] = f"Bearer {api_key.strip()}"
if not config.OPENROUTER_API_KEY:
st.error("β OpenRouter API key is required")
return None
if not uploaded_files:
st.error("β Please upload at least one file")
return None
progress_bar = st.progress(0)
status_text = st.empty()
status_text.text("Loading documents...")
progress_bar.progress(0.1)
# Save uploaded files to temporary location
file_paths = []
for uploaded_file in uploaded_files:
# Create temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=f"_{uploaded_file.name}") as tmp_file:
tmp_file.write(uploaded_file.getvalue())
file_paths.append(tmp_file.name)
# Process documents
doc_results = doc_processor.process_documents(file_paths, batch_mode)
# Clean up temporary files
for file_path in file_paths:
try:
os.unlink(file_path)
except:
pass
# Check for errors
failed_files = [r for r in doc_results if r['status'] == 'error']
if failed_files:
error_msg = "Failed to process files:\n" + "\n".join([f"- {r['file_path']}: {r['error']}" for r in failed_files])
if len(failed_files) == len(doc_results):
st.error(f"β {error_msg}")
return None
status_text.text("Extracting entities and relationships...")
progress_bar.progress(0.3)
# Extract entities and relationships
all_entities = []
all_relationships = []
extraction_errors = []
for doc_result in doc_results:
if doc_result['status'] == 'success':
extraction_result = llm_extractor.process_chunks(doc_result['chunks'])
if extraction_result.get('errors'):
extraction_errors.extend(extraction_result['errors'])
all_entities.extend(extraction_result.get('entities', []))
all_relationships.extend(extraction_result.get('relationships', []))
if not all_entities:
error_msg = "No entities extracted from documents"
if extraction_errors:
error_msg += f"\nExtraction errors: {'; '.join(extraction_errors[:3])}"
st.error(f"β {error_msg}")
return None
status_text.text("Building knowledge graph...")
progress_bar.progress(0.6)
# Build graph
graph = graph_builder.build_graph(all_entities, all_relationships)
if not graph.nodes():
st.error("β No valid knowledge graph could be built")
return None
status_text.text("Applying filters...")
progress_bar.progress(0.7)
# Apply filters
filtered_graph = graph
if entity_types_filter:
filtered_graph = graph_builder.filter_graph(
entity_types=entity_types_filter,
min_importance=min_importance
)
elif min_importance > 0:
filtered_graph = graph_builder.filter_graph(min_importance=min_importance)
if not filtered_graph.nodes():
st.error("β No entities remain after applying filters")
return None
status_text.text("Generating visualizations...")
progress_bar.progress(0.8)
# Generate graph visualization
graph_image_path = visualizer.visualize_graph(
filtered_graph,
layout_type=layout_type,
show_labels=show_labels,
show_edge_labels=show_edge_labels
)
# Get statistics
stats = graph_builder.get_graph_statistics()
stats_summary = visualizer.create_statistics_summary(filtered_graph, stats)
# Get entity list
entity_list = visualizer.create_entity_list(filtered_graph)
# Get central nodes
central_nodes = graph_builder.get_central_nodes()
central_nodes_text = "## Most Central Entities\n\n"
for i, (node, score) in enumerate(central_nodes, 1):
central_nodes_text += f"{i}. **{node}** (centrality: {score:.3f})\n"
status_text.text("Complete!")
progress_bar.progress(1.0)
# Success message
success_msg = f"β
Successfully processed {len([r for r in doc_results if r['status'] == 'success'])} document(s)"
if failed_files:
success_msg += f"\nβ οΈ {len(failed_files)} file(s) failed to process"
if extraction_errors:
success_msg += f"\nβ οΈ {len(extraction_errors)} extraction error(s) occurred"
return {
'success_msg': success_msg,
'graph_image_path': graph_image_path,
'stats_summary': stats_summary,
'entity_list': entity_list,
'central_nodes_text': central_nodes_text,
'graph': filtered_graph
}
except Exception as e:
st.error(f"β Error: {str(e)}")
st.error(f"Full traceback:\n{traceback.format_exc()}")
return None
# Main app
def main():
st.title("πΈοΈ Knowledge Graph Extraction")
st.markdown("""
Upload documents and extract knowledge graphs using LLMs via OpenRouter.
Supports PDF, TXT, DOCX, and JSON files.
""")
# Sidebar for configuration
with st.sidebar:
st.header("π Document Upload")
uploaded_files = st.file_uploader(
"Choose files",
type=['pdf', 'txt', 'docx', 'json'],
accept_multiple_files=True
)
batch_mode = st.checkbox(
"Batch Processing Mode",
value=False,
help="Process multiple files together"
)
st.header("π API Configuration")
api_key = st.text_input(
"OpenRouter API Key",
type="password",
placeholder="Enter your OpenRouter API key",
help="Get your key at openrouter.ai"
)
st.header("ποΈ Visualization Settings")
layout_type = st.selectbox(
"Layout Algorithm",
options=visualizer.get_layout_options(),
index=0
)
show_labels = st.checkbox("Show Node Labels", value=True)
show_edge_labels = st.checkbox("Show Edge Labels", value=False)
st.header("π Filtering Options")
min_importance = st.slider(
"Minimum Entity Importance",
min_value=0.0,
max_value=1.0,
value=0.3,
step=0.1
)
entity_types_filter = st.multiselect(
"Entity Types Filter",
options=[],
help="Filter will be populated after processing"
)
process_button = st.button("π Extract Knowledge Graph", type="primary")
# Main content area
if process_button and uploaded_files:
with st.spinner("Processing..."):
result = process_uploaded_files(
uploaded_files, api_key, batch_mode, layout_type,
show_labels, show_edge_labels, min_importance, entity_types_filter
)
if result:
# Store results in session state
st.session_state['result'] = result
# Display success message
st.success(result['success_msg'])
# Create tabs for results
tab1, tab2, tab3, tab4 = st.tabs(["π Graph Visualization", "π Statistics", "π Entities", "π― Central Nodes"])
with tab1:
if result['graph_image_path'] and os.path.exists(result['graph_image_path']):
st.image(result['graph_image_path'], caption="Knowledge Graph", use_column_width=True)
else:
st.error("Failed to generate graph visualization")
with tab2:
st.markdown(result['stats_summary'])
with tab3:
st.markdown(result['entity_list'])
with tab4:
st.markdown(result['central_nodes_text'])
# Export options
st.header("πΎ Export Options")
col1, col2 = st.columns(2)
with col1:
export_format = st.selectbox(
"Export Format",
options=["json", "graphml", "gexf"],
index=0
)
with col2:
if st.button("π₯ Export Graph"):
try:
export_data = graph_builder.export_graph(export_format)
st.text_area("Export Data", value=export_data, height=300)
# Download button
st.download_button(
label=f"Download {export_format.upper()} file",
data=export_data,
file_name=f"knowledge_graph.{export_format}",
mime="application/octet-stream"
)
except Exception as e:
st.error(f"Export failed: {str(e)}")
elif process_button and not uploaded_files:
st.warning("Please upload at least one file before processing.")
# Instructions
st.header("π Instructions")
with st.expander("How to use this app"):
st.markdown("""
1. **Upload Documents**: Select one or more files (PDF, TXT, DOCX, JSON) using the file uploader in the sidebar
2. **Enter API Key**: Get a free API key from [OpenRouter](https://openrouter.ai) and enter it in the sidebar
3. **Configure Settings**: Adjust visualization and filtering options in the sidebar
4. **Extract Graph**: Click the "Extract Knowledge Graph" button and wait for processing
5. **Explore Results**: View the graph, statistics, and entity details in the tabs
6. **Export**: Download the graph data in various formats
""")
with st.expander("Features"):
st.markdown("""
- **Multi-format Support**: PDF, TXT, DOCX, JSON files
- **Batch Processing**: Process multiple documents together
- **Smart Extraction**: Uses LLM to identify important entities and relationships
- **Interactive Filtering**: Filter by entity type and importance
- **Multiple Layouts**: Various graph layout algorithms
- **Export Options**: JSON, GraphML, GEXF formats
- **Free Models**: Uses cost-effective OpenRouter models
""")
with st.expander("Notes"):
st.markdown("""
- File size limit: 10MB per file
- Free OpenRouter models are used to minimize costs
- Processing time depends on document size and complexity
""")
if __name__ == "__main__":
main()
|