Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
import matplotlib.pyplot as plt
|
| 3 |
import seaborn as sns
|
|
@@ -11,8 +15,8 @@ import zipfile
|
|
| 11 |
from PIL import Image
|
| 12 |
from io import BytesIO
|
| 13 |
|
| 14 |
-
|
| 15 |
-
#
|
| 16 |
data_full = [
|
| 17 |
['CultriX/Qwen2.5-14B-SLERPv7', 'https://huggingface.co/CultriX/Qwen2.5-14B-SLERPv7', 0.7205, 0.8272, 0.7541, 0.6581, 0.5, 0.729],
|
| 18 |
['djuna/Q2.5-Veltha-14B-0.5', 'https://huggingface.co/djuna/Q2.5-Veltha-14B-0.5', 0.7492, 0.8386, 0.7305, 0.598, 0.43, 0.7817],
|
|
@@ -40,17 +44,15 @@ data_full = [
|
|
| 40 |
['CultriX/Qwen2.5-14B-Wernickev7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev7', 0.7147, 0.7599, 0.6097, 0.7056, 0.57, 0.7164],
|
| 41 |
['CultriX/Qwen2.5-14B-FinalMerge-tmp2', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge-tmp2', 0.7255, 0.8192, 0.7535, 0.6671, 0.5, 0.7612],
|
| 42 |
]
|
| 43 |
-
|
| 44 |
columns = ["Model Configuration", "Model Link", "tinyArc", "tinyHellaswag", "tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"]
|
| 45 |
-
|
| 46 |
-
# Convert to DataFrame
|
| 47 |
df_full = pd.DataFrame(data_full, columns=columns)
|
| 48 |
|
| 49 |
-
|
|
|
|
|
|
|
| 50 |
def plot_average_scores():
|
| 51 |
df_full["Average Score"] = df_full.iloc[:, 2:].mean(axis=1)
|
| 52 |
df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False)
|
| 53 |
-
|
| 54 |
plt.figure(figsize=(12, 8))
|
| 55 |
plt.barh(df_avg_sorted["Model Configuration"], df_avg_sorted["Average Score"])
|
| 56 |
plt.title("Average Performance of Models Across Tasks", fontsize=16)
|
|
@@ -59,25 +61,15 @@ def plot_average_scores():
|
|
| 59 |
plt.gca().invert_yaxis()
|
| 60 |
plt.grid(axis='x', linestyle='--', alpha=0.7)
|
| 61 |
plt.tight_layout()
|
| 62 |
-
|
| 63 |
-
img_buffer = io.BytesIO()
|
| 64 |
-
plt.savefig(img_buffer, format='png')
|
| 65 |
-
img_buffer.seek(0)
|
| 66 |
-
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
| 67 |
-
plt.close()
|
| 68 |
-
|
| 69 |
-
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
| 70 |
-
return pil_image, "average_performance.png"
|
| 71 |
-
|
| 72 |
|
|
|
|
| 73 |
def plot_task_performance():
|
| 74 |
df_full_melted = df_full.melt(id_vars=["Model Configuration", "Model Link"], var_name="Task", value_name="Score")
|
| 75 |
-
|
| 76 |
plt.figure(figsize=(14, 10))
|
| 77 |
for model in df_full["Model Configuration"]:
|
| 78 |
model_data = df_full_melted[df_full_melted["Model Configuration"] == model]
|
| 79 |
plt.plot(model_data["Task"], model_data["Score"], marker="o", label=model)
|
| 80 |
-
|
| 81 |
plt.title("Performance of All Models Across Tasks", fontsize=16)
|
| 82 |
plt.xlabel("Task", fontsize=14)
|
| 83 |
plt.ylabel("Score", fontsize=14)
|
|
@@ -85,21 +77,13 @@ def plot_task_performance():
|
|
| 85 |
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=9)
|
| 86 |
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
| 87 |
plt.tight_layout()
|
| 88 |
-
|
| 89 |
-
img_buffer = io.BytesIO()
|
| 90 |
-
plt.savefig(img_buffer, format='png')
|
| 91 |
-
img_buffer.seek(0)
|
| 92 |
-
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
| 93 |
-
plt.close()
|
| 94 |
-
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
| 95 |
-
return pil_image, "task_performance.png"
|
| 96 |
|
|
|
|
| 97 |
def plot_task_specific_top_models():
|
| 98 |
top_models = df_full.iloc[:, 2:].idxmax()
|
| 99 |
top_scores = df_full.iloc[:, 2:].max()
|
| 100 |
-
|
| 101 |
results = pd.DataFrame({"Top Model": top_models, "Score": top_scores}).reset_index().rename(columns={"index": "Task"})
|
| 102 |
-
|
| 103 |
plt.figure(figsize=(12, 6))
|
| 104 |
plt.bar(results["Task"], results["Score"])
|
| 105 |
plt.title("Task-Specific Top Models", fontsize=16)
|
|
@@ -107,179 +91,32 @@ def plot_task_specific_top_models():
|
|
| 107 |
plt.ylabel("Score", fontsize=14)
|
| 108 |
plt.grid(axis="y", linestyle="--", alpha=0.7)
|
| 109 |
plt.tight_layout()
|
|
|
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
img_buffer.seek(0)
|
| 114 |
-
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
| 115 |
-
plt.close()
|
| 116 |
-
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
| 117 |
-
return pil_image, "task_specific_top_models.png"
|
| 118 |
-
|
| 119 |
def scrape_mergekit_config(model_name):
|
| 120 |
-
"""
|
| 121 |
-
Scrapes the Hugging Face model page for YAML configuration.
|
| 122 |
-
"""
|
| 123 |
model_link = df_full.loc[df_full["Model Configuration"] == model_name, "Model Link"].values[0]
|
| 124 |
response = requests.get(model_link)
|
| 125 |
if response.status_code != 200:
|
| 126 |
return f"Failed to fetch model page for {model_name}. Please check the link."
|
| 127 |
-
|
| 128 |
soup = BeautifulSoup(response.text, "html.parser")
|
| 129 |
-
yaml_config = soup.find("pre")
|
| 130 |
-
if yaml_config
|
| 131 |
-
return yaml_config.text.strip()
|
| 132 |
-
return f"No YAML configuration found for {model_name}."
|
| 133 |
|
|
|
|
| 134 |
def plot_heatmap():
|
| 135 |
plt.figure(figsize=(12, 8))
|
| 136 |
sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu", xticklabels=columns[2:], yticklabels=df_full["Model Configuration"])
|
| 137 |
plt.title("Performance Heatmap", fontsize=16)
|
| 138 |
plt.tight_layout()
|
| 139 |
-
|
| 140 |
-
img_buffer = io.BytesIO()
|
| 141 |
-
plt.savefig(img_buffer, format='png')
|
| 142 |
-
img_buffer.seek(0)
|
| 143 |
-
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
| 144 |
-
plt.close()
|
| 145 |
-
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
| 146 |
-
return pil_image, "performance_heatmap.png"
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
def download_yaml(yaml_content, model_name):
|
| 150 |
-
"""
|
| 151 |
-
Generates a downloadable link for the scraped YAML content.
|
| 152 |
-
"""
|
| 153 |
-
if "No YAML configuration found" in yaml_content or "Failed to fetch model page" in yaml_content:
|
| 154 |
-
return None # Do not return a link if there's no config or a fetch error
|
| 155 |
-
|
| 156 |
-
filename = f"{model_name.replace('/', '_')}_config.yaml"
|
| 157 |
-
return gr.File(value=yaml_content.encode(), filename=filename)
|
| 158 |
-
|
| 159 |
-
def download_all_data():
|
| 160 |
-
# Prepare data to download
|
| 161 |
-
csv_buffer = io.StringIO()
|
| 162 |
-
df_full.to_csv(csv_buffer, index=False)
|
| 163 |
-
csv_data = csv_buffer.getvalue().encode('utf-8')
|
| 164 |
-
|
| 165 |
-
# Prepare all plots
|
| 166 |
-
average_plot_pil, average_plot_name = plot_average_scores()
|
| 167 |
-
task_plot_pil, task_plot_name = plot_task_performance()
|
| 168 |
-
top_models_plot_pil, top_models_plot_name = plot_task_specific_top_models()
|
| 169 |
-
heatmap_plot_pil, heatmap_plot_name = plot_heatmap()
|
| 170 |
-
|
| 171 |
-
plot_dict = {
|
| 172 |
-
"average_performance": (average_plot_pil, average_plot_name),
|
| 173 |
-
"task_performance": (task_plot_pil, task_plot_name),
|
| 174 |
-
"top_models": (top_models_plot_pil, top_models_plot_name),
|
| 175 |
-
"heatmap": (heatmap_plot_pil, heatmap_plot_name)
|
| 176 |
-
}
|
| 177 |
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
zf.writestr("model_scores.csv", csv_data)
|
| 181 |
-
|
| 182 |
-
for name, (pil_image, filename) in plot_dict.items():
|
| 183 |
-
image_bytes = io.BytesIO()
|
| 184 |
-
pil_image.save(image_bytes, format='PNG')
|
| 185 |
-
image_bytes.seek(0)
|
| 186 |
-
zf.writestr(filename, image_bytes.read())
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
for model_name in df_full["Model Configuration"].to_list():
|
| 190 |
-
yaml_content = scrape_mergekit_config(model_name)
|
| 191 |
-
if "No YAML configuration found" not in yaml_content and "Failed to fetch model page" not in yaml_content:
|
| 192 |
-
zf.writestr(f"{model_name.replace('/', '_')}_config.yaml", yaml_content.encode())
|
| 193 |
-
|
| 194 |
-
zip_buffer.seek(0)
|
| 195 |
-
|
| 196 |
-
return zip_buffer, "analysis_data.zip"
|
| 197 |
-
|
| 198 |
-
def scrape_model_page(model_url):
|
| 199 |
-
"""
|
| 200 |
-
Scrapes the Hugging Face model page for YAML configuration and other details.
|
| 201 |
-
"""
|
| 202 |
-
try:
|
| 203 |
-
# Fetch the model page
|
| 204 |
-
response = requests.get(model_url)
|
| 205 |
-
if response.status_code != 200:
|
| 206 |
-
return f"Error: Unable to fetch the page (Status Code: {response.status_code})"
|
| 207 |
-
|
| 208 |
-
soup = BeautifulSoup(response.text, "html.parser")
|
| 209 |
-
|
| 210 |
-
# Extract YAML configuration (usually inside <pre> tags)
|
| 211 |
-
yaml_config = soup.find("pre")
|
| 212 |
-
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
|
| 213 |
-
|
| 214 |
-
# Extract additional metadata or performance (if available)
|
| 215 |
-
metadata_section = soup.find("div", class_="metadata")
|
| 216 |
-
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
|
| 217 |
-
|
| 218 |
-
# Return the scraped details
|
| 219 |
-
return f"**YAML Configuration:**\n{yaml_text}\n\n**Metadata:**\n{metadata_text}"
|
| 220 |
-
|
| 221 |
-
except Exception as e:
|
| 222 |
-
return f"Error: {str(e)}"
|
| 223 |
-
|
| 224 |
-
def display_scraped_model_data(model_url):
|
| 225 |
-
"""
|
| 226 |
-
Displays YAML configuration and metadata for a given model URL.
|
| 227 |
-
"""
|
| 228 |
-
return scrape_model_page(model_url)
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
# Gradio app
|
| 232 |
with gr.Blocks() as demo:
|
| 233 |
-
gr.Markdown("# Comprehensive Model Performance Analysis
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
img1_download = gr.File(label="Download Average Performance")
|
| 239 |
-
btn1.click(plot_average_scores, outputs=[img1,img1_download])
|
| 240 |
-
|
| 241 |
-
with gr.Row():
|
| 242 |
-
btn2 = gr.Button("Show Task Performance")
|
| 243 |
-
img2 = gr.Image(type="pil", label="Task Performance Plot")
|
| 244 |
-
img2_download = gr.File(label="Download Task Performance")
|
| 245 |
-
btn2.click(plot_task_performance, outputs=[img2, img2_download])
|
| 246 |
-
|
| 247 |
-
with gr.Row():
|
| 248 |
-
btn3 = gr.Button("Task-Specific Top Models")
|
| 249 |
-
img3 = gr.Image(type="pil", label="Task-Specific Top Models Plot")
|
| 250 |
-
img3_download = gr.File(label="Download Top Models")
|
| 251 |
-
btn3.click(plot_task_specific_top_models, outputs=[img3, img3_download])
|
| 252 |
-
|
| 253 |
-
with gr.Row():
|
| 254 |
-
btn4 = gr.Button("Plot Performance Heatmap")
|
| 255 |
-
heatmap_img = gr.Image(type="pil", label="Performance Heatmap")
|
| 256 |
-
heatmap_download = gr.File(label="Download Heatmap")
|
| 257 |
-
btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download])
|
| 258 |
-
|
| 259 |
-
with gr.Row():
|
| 260 |
-
model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")
|
| 261 |
-
with gr.Column():
|
| 262 |
-
scrape_btn = gr.Button("Scrape MergeKit Configuration")
|
| 263 |
-
yaml_output = gr.Textbox(lines=10, placeholder="YAML Configuration will appear here.")
|
| 264 |
-
scrape_btn.click(scrape_mergekit_config, inputs=model_selector, outputs=yaml_output)
|
| 265 |
-
with gr.Column():
|
| 266 |
-
save_yaml_btn = gr.Button("Save MergeKit Configuration")
|
| 267 |
-
yaml_download = gr.File(label="Download MergeKit Configuration")
|
| 268 |
-
save_yaml_btn.click(download_yaml, inputs=[yaml_output, model_selector], outputs=yaml_download)
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
with gr.Row():
|
| 272 |
-
download_all_btn = gr.Button("Download Everything")
|
| 273 |
-
all_downloads = gr.File(label="Download All Data")
|
| 274 |
-
download_all_btn.click(download_all_data, outputs=all_downloads)
|
| 275 |
-
|
| 276 |
-
# Live scraping feature
|
| 277 |
-
gr.Markdown("## Live Scraping Features")
|
| 278 |
-
with gr.Row():
|
| 279 |
-
url_input = gr.Textbox(label="Enter Hugging Face Model URL", placeholder="https://huggingface.co/<model>")
|
| 280 |
-
live_scrape_btn = gr.Button("Scrape Model Page")
|
| 281 |
-
live_scrape_output = gr.Textbox(label="Scraped Data", lines=15)
|
| 282 |
-
live_scrape_btn.click(display_scraped_model_data, inputs=url_input, outputs=live_scrape_output)
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
demo.launch()
|
|
|
|
| 1 |
+
|
| 2 |
+
## Comprehensive Model Performance Analysis
|
| 3 |
+
|
| 4 |
+
### Importing Required Libraries
|
| 5 |
import pandas as pd
|
| 6 |
import matplotlib.pyplot as plt
|
| 7 |
import seaborn as sns
|
|
|
|
| 15 |
from PIL import Image
|
| 16 |
from io import BytesIO
|
| 17 |
|
| 18 |
+
### Input Data
|
| 19 |
+
# Data with links to Hugging Face repositories
|
| 20 |
data_full = [
|
| 21 |
['CultriX/Qwen2.5-14B-SLERPv7', 'https://huggingface.co/CultriX/Qwen2.5-14B-SLERPv7', 0.7205, 0.8272, 0.7541, 0.6581, 0.5, 0.729],
|
| 22 |
['djuna/Q2.5-Veltha-14B-0.5', 'https://huggingface.co/djuna/Q2.5-Veltha-14B-0.5', 0.7492, 0.8386, 0.7305, 0.598, 0.43, 0.7817],
|
|
|
|
| 44 |
['CultriX/Qwen2.5-14B-Wernickev7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev7', 0.7147, 0.7599, 0.6097, 0.7056, 0.57, 0.7164],
|
| 45 |
['CultriX/Qwen2.5-14B-FinalMerge-tmp2', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge-tmp2', 0.7255, 0.8192, 0.7535, 0.6671, 0.5, 0.7612],
|
| 46 |
]
|
|
|
|
| 47 |
columns = ["Model Configuration", "Model Link", "tinyArc", "tinyHellaswag", "tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"]
|
|
|
|
|
|
|
| 48 |
df_full = pd.DataFrame(data_full, columns=columns)
|
| 49 |
|
| 50 |
+
### Visualization and Analytics Functions
|
| 51 |
+
|
| 52 |
+
# 1. Plot Average Scores
|
| 53 |
def plot_average_scores():
|
| 54 |
df_full["Average Score"] = df_full.iloc[:, 2:].mean(axis=1)
|
| 55 |
df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False)
|
|
|
|
| 56 |
plt.figure(figsize=(12, 8))
|
| 57 |
plt.barh(df_avg_sorted["Model Configuration"], df_avg_sorted["Average Score"])
|
| 58 |
plt.title("Average Performance of Models Across Tasks", fontsize=16)
|
|
|
|
| 61 |
plt.gca().invert_yaxis()
|
| 62 |
plt.grid(axis='x', linestyle='--', alpha=0.7)
|
| 63 |
plt.tight_layout()
|
| 64 |
+
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
+
# 2. Plot Task Performance
|
| 67 |
def plot_task_performance():
|
| 68 |
df_full_melted = df_full.melt(id_vars=["Model Configuration", "Model Link"], var_name="Task", value_name="Score")
|
|
|
|
| 69 |
plt.figure(figsize=(14, 10))
|
| 70 |
for model in df_full["Model Configuration"]:
|
| 71 |
model_data = df_full_melted[df_full_melted["Model Configuration"] == model]
|
| 72 |
plt.plot(model_data["Task"], model_data["Score"], marker="o", label=model)
|
|
|
|
| 73 |
plt.title("Performance of All Models Across Tasks", fontsize=16)
|
| 74 |
plt.xlabel("Task", fontsize=14)
|
| 75 |
plt.ylabel("Score", fontsize=14)
|
|
|
|
| 77 |
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=9)
|
| 78 |
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
| 79 |
plt.tight_layout()
|
| 80 |
+
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
+
# 3. Plot Task-Specific Top Models
|
| 83 |
def plot_task_specific_top_models():
|
| 84 |
top_models = df_full.iloc[:, 2:].idxmax()
|
| 85 |
top_scores = df_full.iloc[:, 2:].max()
|
|
|
|
| 86 |
results = pd.DataFrame({"Top Model": top_models, "Score": top_scores}).reset_index().rename(columns={"index": "Task"})
|
|
|
|
| 87 |
plt.figure(figsize=(12, 6))
|
| 88 |
plt.bar(results["Task"], results["Score"])
|
| 89 |
plt.title("Task-Specific Top Models", fontsize=16)
|
|
|
|
| 91 |
plt.ylabel("Score", fontsize=14)
|
| 92 |
plt.grid(axis="y", linestyle="--", alpha=0.7)
|
| 93 |
plt.tight_layout()
|
| 94 |
+
plt.show()
|
| 95 |
|
| 96 |
+
### YAML Configuration and Scraping Utilities
|
| 97 |
+
# 1. Scrape MergeKit Configuration
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
def scrape_mergekit_config(model_name):
|
|
|
|
|
|
|
|
|
|
| 99 |
model_link = df_full.loc[df_full["Model Configuration"] == model_name, "Model Link"].values[0]
|
| 100 |
response = requests.get(model_link)
|
| 101 |
if response.status_code != 200:
|
| 102 |
return f"Failed to fetch model page for {model_name}. Please check the link."
|
|
|
|
| 103 |
soup = BeautifulSoup(response.text, "html.parser")
|
| 104 |
+
yaml_config = soup.find("pre")
|
| 105 |
+
return yaml_config.text.strip() if yaml_config else f"No YAML configuration found for {model_name}."
|
|
|
|
|
|
|
| 106 |
|
| 107 |
+
### Performance Heatmap
|
| 108 |
def plot_heatmap():
|
| 109 |
plt.figure(figsize=(12, 8))
|
| 110 |
sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu", xticklabels=columns[2:], yticklabels=df_full["Model Configuration"])
|
| 111 |
plt.title("Performance Heatmap", fontsize=16)
|
| 112 |
plt.tight_layout()
|
| 113 |
+
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
+
### Gradio App
|
| 116 |
+
# Building the Interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
with gr.Blocks() as demo:
|
| 118 |
+
gr.Markdown("# Comprehensive Model Performance Analysis")
|
| 119 |
+
gr.Image(type="pil", label="Average Performance Plot")
|
| 120 |
+
gr.Image(type="pil", label="Task Performance Plot")
|
| 121 |
+
gr.Image(type="pil", label="Task-Specific Top Models")
|
| 122 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|