Spaces:
Sleeping
Sleeping
import gradio as gr | |
from fastapi import FastAPI | |
from pydantic import BaseModel | |
from transformers import T5ForConditionalGeneration, T5Tokenizer | |
import torch | |
# Load your fine-tuned model | |
model_path = "./t5-summarizer" # Path inside Docker container | |
model = T5ForConditionalGeneration.from_pretrained(model_path) | |
tokenizer = T5Tokenizer.from_pretrained(model_path, legacy=False) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(device) | |
app = FastAPI() | |
class TextInput(BaseModel): | |
text: str | |
def summarize_text(input: TextInput): | |
input_text = "summarize: " + input.text.strip().replace("\n", " ") | |
inputs = tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True).to(device) | |
summary_ids = model.generate(inputs, max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
return {"summary": summary} | |
# Gradio UI setup | |
gr.Interface( | |
fn=lambda text: summarize_text(TextInput(text=text))["summary"], # Ensure it returns summary | |
inputs=gr.Textbox(label="Input Text"), | |
outputs=gr.Textbox(label="Summarized Text"), | |
flagging=False # Disable flagging to prevent permission issues | |
).launch() | |