Curative commited on
Commit
e2701ca
·
verified ·
1 Parent(s): b3f33f1

Create main.py

Browse files
Files changed (1) hide show
  1. main.py +27 -0
main.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI
2
+ from pydantic import BaseModel
3
+ from transformers import T5ForConditionalGeneration, T5Tokenizer
4
+ import torch
5
+
6
+ # Load your fine-tuned model
7
+ model_path = "./t5-summarizer" # Path inside Docker container
8
+ model = T5ForConditionalGeneration.from_pretrained(model_path)
9
+ tokenizer = T5Tokenizer.from_pretrained(model_path)
10
+
11
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
+ model = model.to(device)
13
+
14
+ app = FastAPI()
15
+
16
+ class TextInput(BaseModel):
17
+ text: str
18
+
19
+ @app.post("/summarize/")
20
+ def summarize_text(input: TextInput):
21
+ input_text = "summarize: " + input.text.strip().replace("\n", " ")
22
+
23
+ inputs = tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True).to(device)
24
+ summary_ids = model.generate(inputs, max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True)
25
+
26
+ summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
27
+ return {"summary": summary}