import gradio as gr from fastapi import FastAPI from pydantic import BaseModel from transformers import T5ForConditionalGeneration, T5Tokenizer import torch import threading import uvicorn # 1. Load model & tokenizer model_path = "./t5-summarizer" tokenizer = T5Tokenizer.from_pretrained(model_path, legacy=False) model = T5ForConditionalGeneration.from_pretrained(model_path) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # 2. FastAPI setup app = FastAPI() class TextInput(BaseModel): text: str @app.post("/summarize/") def summarize_text(input: TextInput): inputs = tokenizer( "summarize: " + input.text.replace("\n", " "), return_tensors="pt", max_length=512, truncation=True ).to(device) summary_ids = model.generate( inputs.input_ids, max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True ) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) return {"summary": summary} def run_fastapi(): uvicorn.run(app, host="0.0.0.0", port=8000) # 3. Gradio UI def summarize_ui(text): return summarize_text(TextInput(text=text))["summary"] iface = gr.Interface( fn=summarize_ui, inputs=gr.Textbox(lines=10, placeholder="Paste your text here..."), outputs=gr.Textbox(label="Summary"), title="Text Summarizer", description="Fine-tuned T5 summarizer on CNN/DailyMail v3.0.0", examples=[ ["Scientists have recently discovered a new species of frog in the Amazon rainforest..."], ["The global economy is expected to grow at a slower pace this year..."], ["In a thrilling final match, the underdog team scored a last-minute goal..."] ], allow_flagging="never" # Disable flagging properly :contentReference[oaicite:3]{index=3} ) # 4. Run both servers threading.Thread(target=run_fastapi, daemon=True).start() iface.launch(server_name="0.0.0.0", server_port=7860)