import gradio as gr from fastapi import FastAPI from pydantic import BaseModel from transformers import T5ForConditionalGeneration, T5Tokenizer import torch import threading import uvicorn # Load model & tokenizer model_path = "./t5-summarizer" tokenizer = T5Tokenizer.from_pretrained(model_path, legacy=False) model = T5ForConditionalGeneration.from_pretrained(model_path) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # FastAPI setup app = FastAPI() class TextInput(BaseModel): text: str @app.post("/summarize/") def summarize_text(input: TextInput): inputs = tokenizer("summarize: " + input.text.replace("\n"," "), return_tensors="pt", max_length=512, truncation=True) outputs = model.generate(inputs.input_ids.to(device), max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True) return {"summary": tokenizer.decode(outputs[0], skip_special_tokens=True)} def run_fastapi(): uvicorn.run(app, host="0.0.0.0", port=8000) # Gradio UI iface = gr.Interface( fn=lambda text: summarize_text(TextInput(text=text))["summary"], inputs=gr.Textbox(lines=10, placeholder="Paste text here..."), outputs=gr.Textbox(label="Summary"), title="Text Summarizer", description="Fine-tuned T5 summarizer", flagging_mode="never", # Disable flagging examples=[["Your example text here..."]] # Pre-load examples ) # Start FastAPI in background, then launch Gradio threading.Thread(target=run_fastapi, daemon=True).start() iface.launch(server_name="0.0.0.0", server_port=7860)