from fastapi import FastAPI from pydantic import BaseModel from transformers import T5ForConditionalGeneration, T5Tokenizer import torch # Load your fine-tuned model model_path = "./t5-summarizer" # Path inside Docker container model = T5ForConditionalGeneration.from_pretrained(model_path) tokenizer = T5Tokenizer.from_pretrained(model_path) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) app = FastAPI() class TextInput(BaseModel): text: str @app.post("/summarize/") def summarize_text(input: TextInput): input_text = "summarize: " + input.text.strip().replace("\n", " ") inputs = tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True).to(device) summary_ids = model.generate(inputs, max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) return {"summary": summary}