Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,72 +1,133 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
|
|
3 |
|
4 |
-
# Lazy‑
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
def get_sentiment():
|
8 |
global sentiment
|
9 |
-
if
|
10 |
-
sentiment = pipeline(
|
11 |
-
|
|
|
|
|
|
|
12 |
return sentiment
|
13 |
|
14 |
def get_classifier():
|
15 |
global classifier
|
16 |
-
if
|
17 |
classifier = pipeline(
|
18 |
"zero-shot-classification",
|
19 |
-
model="facebook/bart-large-mnli"
|
|
|
|
|
20 |
return classifier
|
21 |
|
22 |
def get_ner():
|
23 |
-
global ner
|
24 |
-
if
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
model="elastic/distilbert-base-uncased-finetuned-conll03-english",
|
27 |
-
|
|
|
|
|
|
|
28 |
return ner
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
def process(text, features):
|
38 |
-
|
39 |
if "Summarization" in features:
|
40 |
-
|
41 |
-
text, max_length=150, min_length=40, do_sample=False
|
42 |
-
)[0]["summary_text"]
|
43 |
if "Sentiment" in features:
|
44 |
-
|
45 |
-
|
46 |
if "Classification" in features:
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
]
|
51 |
-
cls = get_classifier()(text, candidate_labels=candidate_labels)
|
52 |
-
# Map labels → scores
|
53 |
-
result["classification"] = dict(zip(cls["labels"], cls["scores"]))
|
54 |
if "Entities" in features:
|
55 |
ents = get_ner()(text)
|
56 |
-
|
57 |
-
|
58 |
-
]
|
59 |
-
return result
|
60 |
|
|
|
61 |
with gr.Blocks() as demo:
|
62 |
gr.Markdown("## 🛠️ Multi‑Feature NLP Service")
|
63 |
-
inp = gr.Textbox(lines=
|
64 |
feats = gr.CheckboxGroup(
|
65 |
["Summarization","Sentiment","Classification","Entities"],
|
66 |
label="Select features to run"
|
67 |
)
|
68 |
btn = gr.Button("Run")
|
69 |
out = gr.JSON(label="Results")
|
|
|
70 |
btn.click(process, [inp, feats], out)
|
71 |
|
72 |
demo.queue(api_open=True).launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoTokenizer
|
3 |
+
import torch
|
4 |
|
5 |
+
# —— Lazy‑loaded pipelines & tokenizers —— #
|
6 |
+
summarizer = sentiment = ner = classifier = None
|
7 |
+
ner_tokenizer = None
|
8 |
+
|
9 |
+
def get_summarizer():
|
10 |
+
global summarizer
|
11 |
+
if summarizer is None:
|
12 |
+
summarizer = pipeline(
|
13 |
+
"summarization",
|
14 |
+
model="Curative/t5-summarizer-cnn",
|
15 |
+
framework="pt"
|
16 |
+
)
|
17 |
+
return summarizer
|
18 |
|
19 |
def get_sentiment():
|
20 |
global sentiment
|
21 |
+
if sentiment is None:
|
22 |
+
sentiment = pipeline(
|
23 |
+
"sentiment-analysis",
|
24 |
+
model="distilbert-base-uncased-finetuned-sst-2-english",
|
25 |
+
framework="pt"
|
26 |
+
)
|
27 |
return sentiment
|
28 |
|
29 |
def get_classifier():
|
30 |
global classifier
|
31 |
+
if classifier is None:
|
32 |
classifier = pipeline(
|
33 |
"zero-shot-classification",
|
34 |
+
model="facebook/bart-large-mnli",
|
35 |
+
framework="pt"
|
36 |
+
)
|
37 |
return classifier
|
38 |
|
39 |
def get_ner():
|
40 |
+
global ner, ner_tokenizer
|
41 |
+
if ner is None:
|
42 |
+
# Load Fast tokenizer explicitly for proper aggregation
|
43 |
+
ner_tokenizer = AutoTokenizer.from_pretrained(
|
44 |
+
"elastic/distilbert-base-uncased-finetuned-conll03-english",
|
45 |
+
use_fast=True
|
46 |
+
)
|
47 |
+
ner = pipeline(
|
48 |
+
"ner",
|
49 |
model="elastic/distilbert-base-uncased-finetuned-conll03-english",
|
50 |
+
tokenizer=ner_tokenizer,
|
51 |
+
aggregation_strategy="simple",
|
52 |
+
framework="pt"
|
53 |
+
)
|
54 |
return ner
|
55 |
|
56 |
+
# —— Helper functions —— #
|
57 |
+
def chunk_and_summarize(text: str) -> str:
|
58 |
+
"""Split on sentences into ≤1,000 char chunks, summarize each, then join."""
|
59 |
+
summarizer = get_summarizer()
|
60 |
+
max_chunk = 1000
|
61 |
+
sentences = text.split(". ")
|
62 |
+
chunks, current = [], ""
|
63 |
+
for sent in sentences:
|
64 |
+
# +2 accounts for the period and space
|
65 |
+
if len(current) + len(sent) + 2 <= max_chunk:
|
66 |
+
current += sent + ". "
|
67 |
+
else:
|
68 |
+
chunks.append(current.strip())
|
69 |
+
current = sent + ". "
|
70 |
+
if current:
|
71 |
+
chunks.append(current.strip())
|
72 |
+
|
73 |
+
summaries = []
|
74 |
+
for chunk in chunks:
|
75 |
+
part = summarizer(
|
76 |
+
chunk,
|
77 |
+
max_length=150,
|
78 |
+
min_length=40,
|
79 |
+
do_sample=False
|
80 |
+
)[0]["summary_text"]
|
81 |
+
summaries.append(part)
|
82 |
+
return " ".join(summaries)
|
83 |
+
|
84 |
+
def merge_entities(ents):
|
85 |
+
"""Merge sub‑word tokens (##…) into full words."""
|
86 |
+
merged = []
|
87 |
+
for e in ents:
|
88 |
+
w, t = e["word"], e["entity_group"]
|
89 |
+
if w.startswith("##") and merged:
|
90 |
+
merged[-1]["word"] += w.replace("##", "")
|
91 |
+
else:
|
92 |
+
merged.append({"word": w, "type": t})
|
93 |
+
return merged
|
94 |
|
95 |
def process(text, features):
|
96 |
+
out = {}
|
97 |
if "Summarization" in features:
|
98 |
+
out["summary"] = chunk_and_summarize(text) # :contentReference[oaicite:7]{index=7}
|
|
|
|
|
99 |
if "Sentiment" in features:
|
100 |
+
s = get_sentiment()(text)[0]
|
101 |
+
out["sentiment"] = {"label": s["label"], "score": s["score"]}
|
102 |
if "Classification" in features:
|
103 |
+
labels = ["technology","sports","business","politics",
|
104 |
+
"health","science","travel","entertainment"]
|
105 |
+
cls = get_classifier()(text, candidate_labels=labels)
|
106 |
+
# Zip & sort
|
107 |
+
pairs = sorted(
|
108 |
+
zip(cls["labels"], cls["scores"]),
|
109 |
+
key=lambda x: x[1],
|
110 |
+
reverse=True
|
111 |
+
)
|
112 |
+
out["classification"] = [
|
113 |
+
{"label": lbl, "score": scr} for lbl, scr in pairs
|
114 |
]
|
|
|
|
|
|
|
115 |
if "Entities" in features:
|
116 |
ents = get_ner()(text)
|
117 |
+
out["entities"] = merge_entities(ents) # :contentReference[oaicite:8]{index=8}
|
118 |
+
return out
|
|
|
|
|
119 |
|
120 |
+
# —— Gradio UI —— #
|
121 |
with gr.Blocks() as demo:
|
122 |
gr.Markdown("## 🛠️ Multi‑Feature NLP Service")
|
123 |
+
inp = gr.Textbox(lines=8, placeholder="Enter your text here…")
|
124 |
feats = gr.CheckboxGroup(
|
125 |
["Summarization","Sentiment","Classification","Entities"],
|
126 |
label="Select features to run"
|
127 |
)
|
128 |
btn = gr.Button("Run")
|
129 |
out = gr.JSON(label="Results")
|
130 |
+
|
131 |
btn.click(process, [inp, feats], out)
|
132 |
|
133 |
demo.queue(api_open=True).launch()
|