Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,24 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForVision2Seq, AutoProcessor
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
import os
|
6 |
|
7 |
-
# Load Qwen-VL model and processor
|
8 |
model_id = "Qwen/Qwen-VL-Chat"
|
9 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
10 |
-
model = AutoModelForVision2Seq.from_pretrained(model_id,
|
|
|
11 |
|
12 |
# Inference function
|
13 |
def ocr_with_qwen(image):
|
|
|
14 |
if image is None:
|
15 |
image = Image.open("test.png")
|
16 |
|
17 |
prompt = "<|im_start|>system\nYou are a helpful assistant. Extract all text from the image and output only the text.<|im_end|>\n<|im_start|>user\n"
|
18 |
-
inputs = processor(images=image, text=prompt, return_tensors="pt").to(
|
19 |
outputs = model.generate(**inputs, max_new_tokens=512)
|
20 |
result = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
21 |
return result.strip()
|
|
|
1 |
+
# app.py
|
2 |
import gradio as gr
|
3 |
from transformers import AutoModelForVision2Seq, AutoProcessor
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
import os
|
7 |
|
8 |
+
# Load Qwen-VL model and processor (trust custom code)
|
9 |
model_id = "Qwen/Qwen-VL-Chat"
|
10 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
11 |
+
model = AutoModelForVision2Seq.from_pretrained(model_id, trust_remote_code=True)
|
12 |
+
model = model.to("cpu")
|
13 |
|
14 |
# Inference function
|
15 |
def ocr_with_qwen(image):
|
16 |
+
# Fallback to test.png if no image uploaded
|
17 |
if image is None:
|
18 |
image = Image.open("test.png")
|
19 |
|
20 |
prompt = "<|im_start|>system\nYou are a helpful assistant. Extract all text from the image and output only the text.<|im_end|>\n<|im_start|>user\n"
|
21 |
+
inputs = processor(images=image, text=prompt, return_tensors="pt").to("cpu")
|
22 |
outputs = model.generate(**inputs, max_new_tokens=512)
|
23 |
result = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
24 |
return result.strip()
|