script-to-keyframe / utils /keyframe_utils.py
qqwjq1981's picture
Update utils/keyframe_utils.py
bbf5ede verified
raw
history blame
4.13 kB
import json
import random
import os
from diffusers import StableDiffusionPipeline
import torch
import openai
# Load and cache the diffusion pipeline (only once)
pipe = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
torch_dtype=torch.float16
)
pipe = pipe.to("cpu")
openai.api_key = os.getenv("OPENAI_API_KEY") # Make sure this is set in your environment
# Global story context (in Chinese)
story_context_cn = "《博物馆的全能ACE》是一部拟人化博物馆文物与AI讲解助手互动的短片,讲述太阳人石刻在闭馆后的博物馆中,遇到了新来的AI助手博小翼,两者展开对话,AI展示了自己的多模态讲解能力与文化知识,最终被文物们认可,并一起展开智慧导览服务的故事。该片融合了文物拟人化、夜间博物馆奇妙氛围、科技感界面与中国地方文化元素,风格活泼、具未来感。"
def generate_keyframe_prompt(segment):
"""
Calls GPT-4o to generate an image prompt optimized for Stable Diffusion,
based on segment content and full story context.
"""
description = segment.get("description", "")
speaker = segment.get("speaker", "")
narration = segment.get("narration", "")
segment_id = segment.get("segment_id")
input_prompt = f"你是一个擅长视觉脚本设计的AI,请基于以下故事整体背景与分镜内容,帮我生成一个适合用于Stable Diffusion图像生成的英文提示词(image prompt),用于生成低分辨率草图风格的关键帧。请注意突出主要角色、镜头氛围、光影、构图、动作,避免复杂背景和细节。
【整体故事背景】:\n{story_context_cn}
【当前分镜描述】:\n{description}
【角色】:{speaker}\n【台词或画外音】:{narration}
请用英文输出一个简洁但具体的prompt,风格偏草图、线稿、卡通、简洁构图,并指出一个negative prompt。"
try:
response = openai.ChatCompletion.create(
model="gpt-4o",
messages=[
{"role": "system", "content": "You are an expert visual prompt designer for image generation."},
{"role": "user", "content": input_prompt}
],
temperature=0.7
)
output_text = response["choices"][0]["message"]["content"]
# Split response into prompt + negative if possible
if "Negative prompt:" in output_text:
prompt, negative = output_text.split("Negative prompt:", 1)
else:
prompt, negative = output_text, "blurry, distorted, low quality, text, watermark"
return {
"prompt": prompt.strip(),
"negative_prompt": negative.strip()
}
except Exception as e:
print(f"[Error] GPT-4o prompt generation failed for segment {segment_id}: {e}")
return {
"prompt": description,
"negative_prompt": ""
}
def generate_all_keyframe_images(script_data, output_dir="keyframes"):
"""
Generates 3 keyframe images per segment using Stable Diffusion,
stores them in the given output directory.
"""
os.makedirs(output_dir, exist_ok=True)
keyframe_outputs = []
for segment in script_data:
sd_prompts = generate_keyframe_prompt(segment)
prompt = sd_prompts["prompt"]
negative_prompt = sd_prompts["negative_prompt"]
segment_id = segment.get("segment_id")
frame_images = []
for i in range(3):
image = pipe(prompt, negative_prompt=negative_prompt, num_inference_steps=20, guidance_scale=7.5, height=256, width=256).images[0]
image_path = os.path.join(output_dir, f"segment_{segment_id}_v{i+1}.png")
image.save(image_path)
frame_images.append(image_path)
keyframe_outputs.append({
"segment_id": segment_id,
"prompt": prompt,
"negative_prompt": negative_prompt,
"frame_images": frame_images
})
print(f"✓ Generated 3 images for Segment {segment_id}")
return keyframe_outputs