Spaces:
Running
Running
import json | |
import random | |
import os | |
from diffusers import StableDiffusionPipeline | |
import torch | |
import openai | |
# Load and cache the diffusion pipeline (only once) | |
pipe = StableDiffusionPipeline.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", | |
torch_dtype=torch.float16 | |
) | |
pipe = pipe.to("cpu") | |
openai.api_key = os.getenv("OPENAI_API_KEY") # Make sure this is set in your environment | |
# Global story context (in Chinese) | |
story_context_cn = "《博物馆的全能ACE》是一部拟人化博物馆文物与AI讲解助手互动的短片,讲述太阳人石刻在闭馆后的博物馆中,遇到了新来的AI助手博小翼,两者展开对话,AI展示了自己的多模态讲解能力与文化知识,最终被文物们认可,并一起展开智慧导览服务的故事。该片融合了文物拟人化、夜间博物馆奇妙氛围、科技感界面与中国地方文化元素,风格活泼、具未来感。" | |
def generate_keyframe_prompt(segment): | |
""" | |
Calls GPT-4o to generate an image prompt optimized for Stable Diffusion, | |
based on segment content and full story context. | |
""" | |
description = segment.get("description", "") | |
speaker = segment.get("speaker", "") | |
narration = segment.get("narration", "") | |
segment_id = segment.get("segment_id") | |
input_prompt = f"你是一个擅长视觉脚本设计的AI,请基于以下故事整体背景与分镜内容,帮我生成一个适合用于Stable Diffusion图像生成的英文提示词(image prompt),用于生成低分辨率草图风格的关键帧。请注意突出主要角色、镜头氛围、光影、构图、动作,避免复杂背景和细节。 | |
【整体故事背景】:\n{story_context_cn} | |
【当前分镜描述】:\n{description} | |
【角色】:{speaker}\n【台词或画外音】:{narration} | |
请用英文输出一个简洁但具体的prompt,风格偏草图、线稿、卡通、简洁构图,并指出一个negative prompt。" | |
try: | |
response = openai.ChatCompletion.create( | |
model="gpt-4o", | |
messages=[ | |
{"role": "system", "content": "You are an expert visual prompt designer for image generation."}, | |
{"role": "user", "content": input_prompt} | |
], | |
temperature=0.7 | |
) | |
output_text = response["choices"][0]["message"]["content"] | |
# Split response into prompt + negative if possible | |
if "Negative prompt:" in output_text: | |
prompt, negative = output_text.split("Negative prompt:", 1) | |
else: | |
prompt, negative = output_text, "blurry, distorted, low quality, text, watermark" | |
return { | |
"prompt": prompt.strip(), | |
"negative_prompt": negative.strip() | |
} | |
except Exception as e: | |
print(f"[Error] GPT-4o prompt generation failed for segment {segment_id}: {e}") | |
return { | |
"prompt": description, | |
"negative_prompt": "" | |
} | |
def generate_all_keyframe_images(script_data, output_dir="keyframes"): | |
""" | |
Generates 3 keyframe images per segment using Stable Diffusion, | |
stores them in the given output directory. | |
""" | |
os.makedirs(output_dir, exist_ok=True) | |
keyframe_outputs = [] | |
for segment in script_data: | |
sd_prompts = generate_keyframe_prompt(segment) | |
prompt = sd_prompts["prompt"] | |
negative_prompt = sd_prompts["negative_prompt"] | |
segment_id = segment.get("segment_id") | |
frame_images = [] | |
for i in range(3): | |
image = pipe(prompt, negative_prompt=negative_prompt, num_inference_steps=20, guidance_scale=7.5, height=256, width=256).images[0] | |
image_path = os.path.join(output_dir, f"segment_{segment_id}_v{i+1}.png") | |
image.save(image_path) | |
frame_images.append(image_path) | |
keyframe_outputs.append({ | |
"segment_id": segment_id, | |
"prompt": prompt, | |
"negative_prompt": negative_prompt, | |
"frame_images": frame_images | |
}) | |
print(f"✓ Generated 3 images for Segment {segment_id}") | |
return keyframe_outputs | |