qqwjq1981 commited on
Commit
7b36c05
·
verified ·
1 Parent(s): f9a79c6

Update utils/keyframe_utils.py

Browse files
Files changed (1) hide show
  1. utils/keyframe_utils.py +11 -38
utils/keyframe_utils.py CHANGED
@@ -1,38 +1,26 @@
1
- import json
2
- import random
3
  import os
 
 
4
  from diffusers import StableDiffusionPipeline
5
  import torch
6
- import openai
7
- from pathlib import Path
8
-
9
- # Load and cache the diffusion pipeline (only once)
10
- pipe = StableDiffusionPipeline.from_pretrained(
11
- "CompVis/stable-diffusion-v1-4",
12
- torch_dtype=torch.float16
13
- )
14
- pipe = pipe.to("cpu")
15
-
16
-
17
 
18
  openai.api_key = os.getenv("OPENAI_API_KEY")
19
 
20
  # Global story context
21
  story_context_cn = "《博物馆的全能ACE》是一部拟人化博物馆文物与AI讲解助手互动的短片,讲述太阳人石刻在闭馆后的博物馆中,遇到了新来的AI助手博小翼,两者展开对话,AI展示了自己的多模态讲解能力与文化知识,最终被文物们认可,并一起展开智慧导览服务的故事。该片融合了文物拟人化、夜间博物馆奇妙氛围、科技感界面与中国地方文化元素,风格活泼、具未来感。"
22
 
23
- # Cache directory for prompts
24
  CACHE_DIR = Path("prompt_cache")
25
  CACHE_DIR.mkdir(exist_ok=True)
26
  LOG_PATH = Path("prompt_log.jsonl")
27
 
 
 
 
28
  def generate_keyframe_prompt(segment):
29
- """
30
- Generates and caches image prompts using GPT-4o for a given segment.
31
- """
32
  segment_id = segment.get("segment_id")
33
  cache_file = CACHE_DIR / f"segment_{segment_id}.json"
34
-
35
- # Return cached result if exists
36
  if cache_file.exists():
37
  with open(cache_file, "r", encoding="utf-8") as f:
38
  return json.load(f)
@@ -41,14 +29,7 @@ def generate_keyframe_prompt(segment):
41
  speaker = segment.get("speaker", "")
42
  narration = segment.get("narration", "")
43
 
44
- input_prompt = f"你是一个擅长视觉脚本设计的AI,请基于以下故事整体背景与分镜内容,帮我生成一个适合用于Stable Diffusion图像生成的英文提示词(image prompt),用于生成低分辨率草图风格的关键帧。请注意突出主要角色、镜头氛围、光影、构图、动作,避免复杂背景和细节。
45
-
46
- 【整体故事背景】:\n{story_context_cn}
47
-
48
- 【当前分镜描述】:\n{description}
49
- 【角色】:{speaker}\n【台词或画外音】:{narration}
50
-
51
- 请用英文输出一个简洁但具体的prompt,风格偏草图、线稿、卡通、简洁构图,并指出一个negative prompt。"
52
 
53
  try:
54
  response = openai.ChatCompletion.create(
@@ -60,7 +41,6 @@ def generate_keyframe_prompt(segment):
60
  temperature=0.7
61
  )
62
  output_text = response["choices"][0]["message"]["content"]
63
-
64
  if "Negative prompt:" in output_text:
65
  prompt, negative = output_text.split("Negative prompt:", 1)
66
  else:
@@ -70,17 +50,11 @@ def generate_keyframe_prompt(segment):
70
  "prompt": prompt.strip(),
71
  "negative_prompt": negative.strip()
72
  }
73
-
74
- # Save to cache
75
  with open(cache_file, "w", encoding="utf-8") as f:
76
  json.dump(result, f, ensure_ascii=False, indent=2)
77
-
78
- # Log to JSONL for review
79
  with open(LOG_PATH, "a", encoding="utf-8") as logf:
80
  logf.write(json.dumps({"segment_id": segment_id, **result}, ensure_ascii=False) + "\n")
81
-
82
  return result
83
-
84
  except Exception as e:
85
  print(f"[Error] GPT-4o prompt generation failed for segment {segment_id}: {e}")
86
  return {
@@ -89,10 +63,6 @@ def generate_keyframe_prompt(segment):
89
  }
90
 
91
  def generate_all_keyframe_images(script_data, output_dir="keyframes"):
92
- """
93
- Generates 3 keyframe images per segment using Stable Diffusion,
94
- stores them in the given output directory.
95
- """
96
  os.makedirs(output_dir, exist_ok=True)
97
  keyframe_outputs = []
98
 
@@ -118,4 +88,7 @@ def generate_all_keyframe_images(script_data, output_dir="keyframes"):
118
 
119
  print(f"✓ Generated 3 images for Segment {segment_id}")
120
 
 
 
 
121
  return keyframe_outputs
 
1
+ import openai
 
2
  import os
3
+ import json
4
+ from pathlib import Path
5
  from diffusers import StableDiffusionPipeline
6
  import torch
 
 
 
 
 
 
 
 
 
 
 
7
 
8
  openai.api_key = os.getenv("OPENAI_API_KEY")
9
 
10
  # Global story context
11
  story_context_cn = "《博物馆的全能ACE》是一部拟人化博物馆文物与AI讲解助手互动的短片,讲述太阳人石刻在闭馆后的博物馆中,遇到了新来的AI助手博小翼,两者展开对话,AI展示了自己的多模态讲解能力与文化知识,最终被文物们认可,并一起展开智慧导览服务的故事。该片融合了文物拟人化、夜间博物馆奇妙氛围、科技感界面与中国地方文化元素,风格活泼、具未来感。"
12
 
13
+ # Cache and log directories
14
  CACHE_DIR = Path("prompt_cache")
15
  CACHE_DIR.mkdir(exist_ok=True)
16
  LOG_PATH = Path("prompt_log.jsonl")
17
 
18
+ pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
19
+ pipe = pipe.to("cuda")
20
+
21
  def generate_keyframe_prompt(segment):
 
 
 
22
  segment_id = segment.get("segment_id")
23
  cache_file = CACHE_DIR / f"segment_{segment_id}.json"
 
 
24
  if cache_file.exists():
25
  with open(cache_file, "r", encoding="utf-8") as f:
26
  return json.load(f)
 
29
  speaker = segment.get("speaker", "")
30
  narration = segment.get("narration", "")
31
 
32
+ input_prompt = f"你是一个擅长视觉脚本设计的AI,请基于以下故事整体背景与分镜内容,帮我生成一个适合用于Stable Diffusion图像生成的英文提示词(image prompt),用于生成低分辨率草图风格的关键帧。请注意突出主要角色、镜头氛围、光影、构图、动作,避免复杂背景和细节。\n\n【整体故事背景】:\n{story_context_cn}\n\n【当前分镜描述】:\n{description}\n【角色】:{speaker}\n【台词或画外音】:{narration}\n\n请用英文输出一个简洁但具体的prompt,风格偏草图、线稿、卡通、简洁构图,并指出一个negative prompt。"
 
 
 
 
 
 
 
33
 
34
  try:
35
  response = openai.ChatCompletion.create(
 
41
  temperature=0.7
42
  )
43
  output_text = response["choices"][0]["message"]["content"]
 
44
  if "Negative prompt:" in output_text:
45
  prompt, negative = output_text.split("Negative prompt:", 1)
46
  else:
 
50
  "prompt": prompt.strip(),
51
  "negative_prompt": negative.strip()
52
  }
 
 
53
  with open(cache_file, "w", encoding="utf-8") as f:
54
  json.dump(result, f, ensure_ascii=False, indent=2)
 
 
55
  with open(LOG_PATH, "a", encoding="utf-8") as logf:
56
  logf.write(json.dumps({"segment_id": segment_id, **result}, ensure_ascii=False) + "\n")
 
57
  return result
 
58
  except Exception as e:
59
  print(f"[Error] GPT-4o prompt generation failed for segment {segment_id}: {e}")
60
  return {
 
63
  }
64
 
65
  def generate_all_keyframe_images(script_data, output_dir="keyframes"):
 
 
 
 
66
  os.makedirs(output_dir, exist_ok=True)
67
  keyframe_outputs = []
68
 
 
88
 
89
  print(f"✓ Generated 3 images for Segment {segment_id}")
90
 
91
+ with open("all_prompts_output.json", "w", encoding="utf-8") as f:
92
+ json.dump(keyframe_outputs, f, ensure_ascii=False, indent=2)
93
+
94
  return keyframe_outputs