qqwjq1981 commited on
Commit
8d922da
·
verified ·
1 Parent(s): 370793b

Update utils/keyframe_utils.py

Browse files
Files changed (1) hide show
  1. utils/keyframe_utils.py +29 -7
utils/keyframe_utils.py CHANGED
@@ -2,8 +2,9 @@ import openai
2
  import os
3
  import json
4
  from pathlib import Path
5
- from diffusers import StableDiffusionPipeline
6
  import torch
 
7
 
8
  openai.api_key = os.getenv("OPENAI_API_KEY")
9
 
@@ -15,8 +16,18 @@ CACHE_DIR = Path("prompt_cache")
15
  CACHE_DIR.mkdir(exist_ok=True)
16
  LOG_PATH = Path("prompt_log.jsonl")
17
 
18
- pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
19
- pipe = pipe.to("cpu")
 
 
 
 
 
 
 
 
 
 
20
 
21
  def generate_keyframe_prompt(segment):
22
  segment_id = segment.get("segment_id")
@@ -29,7 +40,7 @@ def generate_keyframe_prompt(segment):
29
  speaker = segment.get("speaker", "")
30
  narration = segment.get("narration", "")
31
 
32
- input_prompt = f"你是一个擅长视觉脚本设计的AI,请基于以下故事整体背景与分镜内容,帮我生成一个适合用于Stable Diffusion图像生成的英文提示词(image prompt),用于生成低分辨率草图风格的关键帧。请注意突出主要角色、镜头氛围、光影、构图、动作,避免复杂背景和细节。\n\n【整体故事背景】:\n{story_context_cn}\n\n【当前分镜描述】:\n{description}\n【角色】:{speaker}\n【台词或画外音】:{narration}\n\n请用英文输出一个简洁但具体的prompt,风格偏草图、线稿、卡通、简洁构图,并指出一个negative prompt。"
33
 
34
  try:
35
  response = openai.ChatCompletion.create(
@@ -72,9 +83,20 @@ def generate_all_keyframe_images(script_data, output_dir="keyframes"):
72
  negative_prompt = sd_prompts["negative_prompt"]
73
  segment_id = segment.get("segment_id")
74
 
 
 
 
 
 
 
 
75
  frame_images = []
76
  for i in range(3):
77
- image = pipe(prompt, negative_prompt=negative_prompt, num_inference_steps=20, guidance_scale=7.5, height=256, width=256).images[0]
 
 
 
 
78
  image_path = os.path.join(output_dir, f"segment_{segment_id}_v{i+1}.png")
79
  image.save(image_path)
80
  frame_images.append(image_path)
@@ -86,9 +108,9 @@ def generate_all_keyframe_images(script_data, output_dir="keyframes"):
86
  "frame_images": frame_images
87
  })
88
 
89
- print(f"✓ Generated 3 images for Segment {segment_id}")
90
 
91
  with open("all_prompts_output.json", "w", encoding="utf-8") as f:
92
  json.dump(keyframe_outputs, f, ensure_ascii=False, indent=2)
93
 
94
- return keyframe_outputs
 
2
  import os
3
  import json
4
  from pathlib import Path
5
+ from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
6
  import torch
7
+ from PIL import Image
8
 
9
  openai.api_key = os.getenv("OPENAI_API_KEY")
10
 
 
16
  CACHE_DIR.mkdir(exist_ok=True)
17
  LOG_PATH = Path("prompt_log.jsonl")
18
 
19
+ # Pipelines
20
+ pipe_txt2img = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16).to("cuda")
21
+ pipe_img2img = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16).to("cuda")
22
+
23
+ # Reference image context for characters
24
+ REFERENCE_CONTEXT = "参考角色视觉信息:'太阳人石刻' 是带有放射状头饰、佩戴墨镜的新石器时代人物形象,风格庄严中略带潮流感。图像见 assets/sunman.png。'博小翼' 是一个圆头圆眼、漂浮型的可爱AI机器人助手,风格拟人、语气亲切,图像见 assets/boxiaoyi.png。"
25
+
26
+ # Reference image map
27
+ ASSET_IMAGES = {
28
+ "太阳人": "assets/sunman.png",
29
+ "博小翼": "assets/boxiaoyi.png"
30
+ }
31
 
32
  def generate_keyframe_prompt(segment):
33
  segment_id = segment.get("segment_id")
 
40
  speaker = segment.get("speaker", "")
41
  narration = segment.get("narration", "")
42
 
43
+ input_prompt = f"你是一个擅长视觉脚本设计的AI,请基于以下故事整体背景与分镜内容,帮我生成一个适合用于Stable Diffusion图像生成的英文提示词(image prompt),用于生成低分辨率草图风格的关键帧。请注意突出主要角色、镜头氛围、光影、构图、动作,避免复杂背景和细节。\n\n【整体故事背景】:\n{story_context_cn}\n\n【当前分镜描述】:\n{description}\n【角色】:{speaker}\n【台词或画外音】:{narration}\n\n{REFERENCE_CONTEXT}\n\n请用英文输出一个简洁但具体的prompt,风格偏草图、线稿、卡通、简洁构图,并指出一个negative prompt。"
44
 
45
  try:
46
  response = openai.ChatCompletion.create(
 
83
  negative_prompt = sd_prompts["negative_prompt"]
84
  segment_id = segment.get("segment_id")
85
 
86
+ description = segment.get("description", "")
87
+ use_reference = any(name in description for name in ASSET_IMAGES)
88
+
89
+ if use_reference:
90
+ ref_key = next(k for k in ASSET_IMAGES if k in description)
91
+ init_image = Image.open(ASSET_IMAGES[ref_key]).convert("RGB").resize((512, 512))
92
+
93
  frame_images = []
94
  for i in range(3):
95
+ if use_reference:
96
+ image = pipe_img2img(prompt=prompt, image=init_image, negative_prompt=negative_prompt, strength=0.6, guidance_scale=7.5).images[0]
97
+ else:
98
+ image = pipe_txt2img(prompt, negative_prompt=negative_prompt, num_inference_steps=20, guidance_scale=7.5, height=256, width=256).images[0]
99
+
100
  image_path = os.path.join(output_dir, f"segment_{segment_id}_v{i+1}.png")
101
  image.save(image_path)
102
  frame_images.append(image_path)
 
108
  "frame_images": frame_images
109
  })
110
 
111
+ print(f"✓ Generated 3 images for Segment {segment_id} ({'img2img' if use_reference else 'txt2img'})")
112
 
113
  with open("all_prompts_output.json", "w", encoding="utf-8") as f:
114
  json.dump(keyframe_outputs, f, ensure_ascii=False, indent=2)
115
 
116
+ return keyframe_outputs