Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -482,19 +482,40 @@ def solve_optimal_alignment(original_segments, generated_durations, total_durati
|
|
482 |
)
|
483 |
|
484 |
return original_segments
|
485 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
486 |
def ocr_frame_worker(args):
|
487 |
frame_idx, frame_time, frame = args
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
493 |
|
494 |
def frame_is_in_audio_segments(frame_time, audio_segments, tolerance=0.2):
|
495 |
-
"""
|
496 |
-
Check if the frame_time falls within any audio segment (plus/minus tolerance).
|
497 |
-
"""
|
498 |
for segment in audio_segments:
|
499 |
start, end = segment["start"], segment["end"]
|
500 |
if (start - tolerance) <= frame_time <= (end + tolerance):
|
@@ -518,19 +539,20 @@ def extract_ocr_subtitles_parallel(video_path, transcription_json, interval_sec=
|
|
518 |
cap.release()
|
519 |
|
520 |
ocr_results = []
|
521 |
-
with concurrent.futures.
|
522 |
futures = [executor.submit(ocr_frame_worker, frame) for frame in frames]
|
523 |
-
|
524 |
for f in tqdm(concurrent.futures.as_completed(futures), total=len(futures)):
|
525 |
try:
|
526 |
result = f.result()
|
527 |
if result["text"]:
|
528 |
ocr_results.append(result)
|
529 |
except Exception as e:
|
530 |
-
print(f"⚠️ OCR failed
|
531 |
|
532 |
return ocr_results
|
533 |
|
|
|
534 |
def collapse_ocr_subtitles(ocr_json, text_similarity_threshold=90):
|
535 |
collapsed = []
|
536 |
current = None
|
|
|
482 |
)
|
483 |
|
484 |
return original_segments
|
485 |
+
|
486 |
+
ocr_model = None
|
487 |
+
ocr_lock = threading.Lock()
|
488 |
+
|
489 |
+
def init_ocr_model():
|
490 |
+
global ocr_model
|
491 |
+
with ocr_lock:
|
492 |
+
if ocr_model is None:
|
493 |
+
ocr_model = PaddleOCR(use_angle_cls=True, lang="ch")
|
494 |
+
|
495 |
def ocr_frame_worker(args):
|
496 |
frame_idx, frame_time, frame = args
|
497 |
+
|
498 |
+
init_ocr_model() # Ensure model is loaded once per process
|
499 |
+
|
500 |
+
if frame is None or frame.size == 0:
|
501 |
+
return {"time": frame_time, "text": ""}
|
502 |
+
|
503 |
+
if not isinstance(frame, np.ndarray):
|
504 |
+
return {"time": frame_time, "text": ""}
|
505 |
+
|
506 |
+
if frame.dtype != np.uint8:
|
507 |
+
frame = frame.astype(np.uint8)
|
508 |
+
|
509 |
+
try:
|
510 |
+
result = ocr_model.ocr(frame, cls=True)
|
511 |
+
texts = [line[1][0] for line in result[0]] if result[0] else []
|
512 |
+
combined_text = " ".join(texts).strip()
|
513 |
+
return {"time": frame_time, "text": combined_text}
|
514 |
+
except Exception as e:
|
515 |
+
print(f"⚠️ OCR failed at {frame_time:.2f}s: {e}")
|
516 |
+
return {"time": frame_time, "text": ""}
|
517 |
|
518 |
def frame_is_in_audio_segments(frame_time, audio_segments, tolerance=0.2):
|
|
|
|
|
|
|
519 |
for segment in audio_segments:
|
520 |
start, end = segment["start"], segment["end"]
|
521 |
if (start - tolerance) <= frame_time <= (end + tolerance):
|
|
|
539 |
cap.release()
|
540 |
|
541 |
ocr_results = []
|
542 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
|
543 |
futures = [executor.submit(ocr_frame_worker, frame) for frame in frames]
|
544 |
+
|
545 |
for f in tqdm(concurrent.futures.as_completed(futures), total=len(futures)):
|
546 |
try:
|
547 |
result = f.result()
|
548 |
if result["text"]:
|
549 |
ocr_results.append(result)
|
550 |
except Exception as e:
|
551 |
+
print(f"⚠️ OCR worker failed: {e}")
|
552 |
|
553 |
return ocr_results
|
554 |
|
555 |
+
|
556 |
def collapse_ocr_subtitles(ocr_json, text_similarity_threshold=90):
|
557 |
collapsed = []
|
558 |
current = None
|