Spaces:
Sleeping
Sleeping
Upload 6 files
Browse files- .gitattributes +2 -0
- NotoSansSC-Regular.ttf +3 -0
- README.md +5 -4
- app.py +741 -0
- apt.txt +9 -0
- requirements.txt +22 -0
- speaker_default_sample.wav +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
NotoSansSC-Regular.ttf filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
speaker_default_sample.wav filter=lfs diff=lfs merge=lfs -text
|
NotoSansSC-Regular.ttf
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5cf8b2a0576d5680284ab03a7a8219499d59bbe981a79bb3dc0031f251c39736
|
| 3 |
+
size 10560616
|
README.md
CHANGED
|
@@ -1,12 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.23.3
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: studio_V1
|
| 3 |
+
emoji: 🔥
|
| 4 |
+
colorFrom: pink
|
| 5 |
+
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.23.3
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
short_description: Studio
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,741 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import cvxpy as cp
|
| 3 |
+
import re
|
| 4 |
+
import concurrent.futures
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
import random
|
| 8 |
+
import moviepy
|
| 9 |
+
from transformers import pipeline
|
| 10 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
| 11 |
+
from moviepy.editor import (
|
| 12 |
+
ImageClip,
|
| 13 |
+
VideoFileClip,
|
| 14 |
+
TextClip,
|
| 15 |
+
CompositeVideoClip,
|
| 16 |
+
CompositeAudioClip,
|
| 17 |
+
AudioFileClip,
|
| 18 |
+
concatenate_videoclips,
|
| 19 |
+
concatenate_audioclips
|
| 20 |
+
)
|
| 21 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 22 |
+
from moviepy.audio.AudioClip import AudioArrayClip
|
| 23 |
+
import subprocess
|
| 24 |
+
import speech_recognition as sr
|
| 25 |
+
import json
|
| 26 |
+
from nltk.tokenize import sent_tokenize
|
| 27 |
+
import logging
|
| 28 |
+
import whisperx
|
| 29 |
+
import time
|
| 30 |
+
import os
|
| 31 |
+
import openai
|
| 32 |
+
from openai import OpenAI
|
| 33 |
+
import traceback
|
| 34 |
+
from TTS.api import TTS
|
| 35 |
+
import torch
|
| 36 |
+
from pydub import AudioSegment
|
| 37 |
+
from pyannote.audio import Pipeline
|
| 38 |
+
import traceback
|
| 39 |
+
import wave
|
| 40 |
+
|
| 41 |
+
logger = logging.getLogger(__name__)
|
| 42 |
+
|
| 43 |
+
# Configure logging
|
| 44 |
+
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 45 |
+
logger = logging.getLogger(__name__)
|
| 46 |
+
logger.info(f"MoviePy Version: {moviepy.__version__}")
|
| 47 |
+
|
| 48 |
+
# Accept license terms for Coqui XTTS
|
| 49 |
+
os.environ["COQUI_TOS_AGREED"] = "1"
|
| 50 |
+
# torch.serialization.add_safe_globals([XttsConfig])
|
| 51 |
+
|
| 52 |
+
logger.info(gr.__version__)
|
| 53 |
+
|
| 54 |
+
client = OpenAI(
|
| 55 |
+
api_key= os.environ.get("openAI_api_key"), # This is the default and can be omitted
|
| 56 |
+
)
|
| 57 |
+
hf_api_key = os.environ.get("hf_token")
|
| 58 |
+
|
| 59 |
+
def silence(duration, fps=44100):
|
| 60 |
+
"""
|
| 61 |
+
Returns a silent AudioClip of the specified duration.
|
| 62 |
+
"""
|
| 63 |
+
return AudioArrayClip(np.zeros((int(fps*duration), 2)), fps=fps)
|
| 64 |
+
|
| 65 |
+
def count_words_or_characters(text):
|
| 66 |
+
# Count non-Chinese words
|
| 67 |
+
non_chinese_words = len(re.findall(r'\b[a-zA-Z0-9]+\b', text))
|
| 68 |
+
|
| 69 |
+
# Count Chinese characters
|
| 70 |
+
chinese_chars = len(re.findall(r'[\u4e00-\u9fff]', text))
|
| 71 |
+
|
| 72 |
+
return non_chinese_words + chinese_chars
|
| 73 |
+
|
| 74 |
+
# Define the passcode
|
| 75 |
+
PASSCODE = "show_feedback_db"
|
| 76 |
+
|
| 77 |
+
css = """
|
| 78 |
+
/* Adjust row height */
|
| 79 |
+
.dataframe-container tr {
|
| 80 |
+
height: 50px !important;
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
/* Ensure text wrapping and prevent overflow */
|
| 84 |
+
.dataframe-container td {
|
| 85 |
+
white-space: normal !important;
|
| 86 |
+
word-break: break-word !important;
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
/* Set column widths */
|
| 90 |
+
[data-testid="block-container"] .scrolling-dataframe th:nth-child(1),
|
| 91 |
+
[data-testid="block-container"] .scrolling-dataframe td:nth-child(1) {
|
| 92 |
+
width: 6%; /* Start column */
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
[data-testid="block-container"] .scrolling-dataframe th:nth-child(2),
|
| 96 |
+
[data-testid="block-container"] .scrolling-dataframe td:nth-child(2) {
|
| 97 |
+
width: 47%; /* Original text */
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
[data-testid="block-container"] .scrolling-dataframe th:nth-child(3),
|
| 101 |
+
[data-testid="block-container"] .scrolling-dataframe td:nth-child(3) {
|
| 102 |
+
width: 47%; /* Translated text */
|
| 103 |
+
}
|
| 104 |
+
|
| 105 |
+
[data-testid="block-container"] .scrolling-dataframe th:nth-child(4),
|
| 106 |
+
[data-testid="block-container"] .scrolling-dataframe td:nth-child(4) {
|
| 107 |
+
display: none !important;
|
| 108 |
+
}
|
| 109 |
+
"""
|
| 110 |
+
|
| 111 |
+
# Function to save feedback or provide access to the database file
|
| 112 |
+
def handle_feedback(feedback):
|
| 113 |
+
feedback = feedback.strip() # Clean up leading/trailing whitespace
|
| 114 |
+
if not feedback:
|
| 115 |
+
return "Feedback cannot be empty.", None
|
| 116 |
+
|
| 117 |
+
if feedback == PASSCODE:
|
| 118 |
+
# Provide access to the feedback.db file
|
| 119 |
+
return "Access granted! Download the database file below.", "feedback.db"
|
| 120 |
+
else:
|
| 121 |
+
# Save feedback to the database
|
| 122 |
+
with sqlite3.connect("feedback.db") as conn:
|
| 123 |
+
cursor = conn.cursor()
|
| 124 |
+
cursor.execute("CREATE TABLE IF NOT EXISTS studio_feedback (id INTEGER PRIMARY KEY, comment TEXT)")
|
| 125 |
+
cursor.execute("INSERT INTO studio_feedback (comment) VALUES (?)", (feedback,))
|
| 126 |
+
conn.commit()
|
| 127 |
+
return "Thank you for your feedback!", None
|
| 128 |
+
|
| 129 |
+
def segment_background_audio(audio_path, background_audio_path="background_segments.wav"):
|
| 130 |
+
pipeline = Pipeline.from_pretrained("pyannote/voice-activity-detection", use_auth_token=hf_api_key)
|
| 131 |
+
vad_result = pipeline(audio_path)
|
| 132 |
+
|
| 133 |
+
full_audio = AudioSegment.from_wav(audio_path)
|
| 134 |
+
full_duration_sec = len(full_audio) / 1000.0
|
| 135 |
+
|
| 136 |
+
current_time = 0.0
|
| 137 |
+
result_audio = AudioSegment.empty()
|
| 138 |
+
|
| 139 |
+
for segment in vad_result.itersegments():
|
| 140 |
+
# Background segment before the speech
|
| 141 |
+
if current_time < segment.start:
|
| 142 |
+
bg = full_audio[int(current_time * 1000):int(segment.start * 1000)]
|
| 143 |
+
result_audio += bg
|
| 144 |
+
# Add silence for the speech duration
|
| 145 |
+
silence_duration = segment.end - segment.start
|
| 146 |
+
result_audio += AudioSegment.silent(duration=int(silence_duration * 1000))
|
| 147 |
+
current_time = segment.end
|
| 148 |
+
|
| 149 |
+
# Handle any remaining background after the last speech
|
| 150 |
+
if current_time < full_duration_sec:
|
| 151 |
+
result_audio += full_audio[int(current_time * 1000):]
|
| 152 |
+
|
| 153 |
+
result_audio.export(background_audio_path, format="wav")
|
| 154 |
+
return background_audio_path
|
| 155 |
+
|
| 156 |
+
def transcribe_video_with_speakers(video_path):
|
| 157 |
+
# Extract audio from video
|
| 158 |
+
video = VideoFileClip(video_path)
|
| 159 |
+
audio_path = "audio.wav"
|
| 160 |
+
video.audio.write_audiofile(audio_path)
|
| 161 |
+
logger.info(f"Audio extracted from video: {audio_path}")
|
| 162 |
+
|
| 163 |
+
segment_result = segment_background_audio(audio_path)
|
| 164 |
+
print(f"Saved non-speech (background) audio to local")
|
| 165 |
+
|
| 166 |
+
# Set up device
|
| 167 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 168 |
+
logger.info(f"Using device: {device}")
|
| 169 |
+
|
| 170 |
+
try:
|
| 171 |
+
# Load a medium model with float32 for broader compatibility
|
| 172 |
+
model = whisperx.load_model("large-v3", device=device, compute_type="float32")
|
| 173 |
+
logger.info("WhisperX model loaded")
|
| 174 |
+
|
| 175 |
+
# Transcribe
|
| 176 |
+
result = model.transcribe(audio_path, chunk_size=6, print_progress = True)
|
| 177 |
+
logger.info("Audio transcription completed")
|
| 178 |
+
|
| 179 |
+
# Get the detected language
|
| 180 |
+
detected_language = result["language"]
|
| 181 |
+
logger.debug(f"Detected language: {detected_language}")
|
| 182 |
+
# Alignment
|
| 183 |
+
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
|
| 184 |
+
result = whisperx.align(result["segments"], model_a, metadata, audio_path, device)
|
| 185 |
+
logger.info("Transcription alignment completed")
|
| 186 |
+
|
| 187 |
+
# Diarization (works independently of Whisper model size)
|
| 188 |
+
diarize_model = whisperx.DiarizationPipeline(use_auth_token=hf_api_key, device=device)
|
| 189 |
+
diarize_segments = diarize_model(audio_path)
|
| 190 |
+
logger.info("Speaker diarization completed")
|
| 191 |
+
|
| 192 |
+
# Assign speakers
|
| 193 |
+
result = whisperx.assign_word_speakers(diarize_segments, result)
|
| 194 |
+
logger.info("Speakers assigned to transcribed segments")
|
| 195 |
+
|
| 196 |
+
except Exception as e:
|
| 197 |
+
logger.error(f"❌ WhisperX pipeline failed: {e}")
|
| 198 |
+
|
| 199 |
+
# Extract timestamps, text, and speaker IDs
|
| 200 |
+
transcript_with_speakers = [
|
| 201 |
+
{
|
| 202 |
+
"start": segment["start"],
|
| 203 |
+
"end": segment["end"],
|
| 204 |
+
"text": segment["text"],
|
| 205 |
+
"speaker": segment["speaker"]
|
| 206 |
+
}
|
| 207 |
+
for segment in result["segments"]
|
| 208 |
+
]
|
| 209 |
+
|
| 210 |
+
# Collect audio for each speaker
|
| 211 |
+
speaker_audio = {}
|
| 212 |
+
for segment in result["segments"]:
|
| 213 |
+
speaker = segment["speaker"]
|
| 214 |
+
if speaker not in speaker_audio:
|
| 215 |
+
speaker_audio[speaker] = []
|
| 216 |
+
speaker_audio[speaker].append((segment["start"], segment["end"]))
|
| 217 |
+
|
| 218 |
+
# Collapse and truncate speaker audio
|
| 219 |
+
speaker_sample_paths = {}
|
| 220 |
+
audio_clip = AudioFileClip(audio_path)
|
| 221 |
+
for speaker, segments in speaker_audio.items():
|
| 222 |
+
speaker_clips = [audio_clip.subclip(start, end) for start, end in segments]
|
| 223 |
+
combined_clip = concatenate_audioclips(speaker_clips)
|
| 224 |
+
truncated_clip = combined_clip.subclip(0, min(30, combined_clip.duration))
|
| 225 |
+
sample_path = f"speaker_{speaker}_sample.wav"
|
| 226 |
+
truncated_clip.write_audiofile(sample_path)
|
| 227 |
+
speaker_sample_paths[speaker] = sample_path
|
| 228 |
+
logger.info(f"Created sample for {speaker}: {sample_path}")
|
| 229 |
+
|
| 230 |
+
# Clean up
|
| 231 |
+
video.close()
|
| 232 |
+
audio_clip.close()
|
| 233 |
+
os.remove(audio_path)
|
| 234 |
+
|
| 235 |
+
return transcript_with_speakers, detected_language
|
| 236 |
+
|
| 237 |
+
# Function to get the appropriate translation model based on target language
|
| 238 |
+
def get_translation_model(source_language, target_language):
|
| 239 |
+
"""
|
| 240 |
+
Get the translation model based on the source and target language.
|
| 241 |
+
|
| 242 |
+
Parameters:
|
| 243 |
+
- target_language (str): The language to translate the content into (e.g., 'es', 'fr').
|
| 244 |
+
- source_language (str): The language of the input content (default is 'en' for English).
|
| 245 |
+
|
| 246 |
+
Returns:
|
| 247 |
+
- str: The translation model identifier.
|
| 248 |
+
"""
|
| 249 |
+
# List of allowable languages
|
| 250 |
+
allowable_languages = ["en", "es", "fr", "zh", "de", "it", "pt", "ja", "ko", "ru"]
|
| 251 |
+
|
| 252 |
+
# Validate source and target languages
|
| 253 |
+
if source_language not in allowable_languages:
|
| 254 |
+
logger.debug(f"Invalid source language '{source_language}'. Supported languages are: {', '.join(allowable_languages)}")
|
| 255 |
+
# Return a default model if source language is invalid
|
| 256 |
+
source_language = "en" # Default to 'en'
|
| 257 |
+
|
| 258 |
+
if target_language not in allowable_languages:
|
| 259 |
+
logger.debug(f"Invalid target language '{target_language}'. Supported languages are: {', '.join(allowable_languages)}")
|
| 260 |
+
# Return a default model if target language is invalid
|
| 261 |
+
target_language = "zh" # Default to 'zh'
|
| 262 |
+
|
| 263 |
+
if source_language == target_language:
|
| 264 |
+
source_language = "en" # Default to 'en'
|
| 265 |
+
target_language = "zh" # Default to 'zh'
|
| 266 |
+
|
| 267 |
+
# Return the model using string concatenation
|
| 268 |
+
return f"Helsinki-NLP/opus-mt-{source_language}-{target_language}"
|
| 269 |
+
|
| 270 |
+
def translate_single_entry(entry, translator):
|
| 271 |
+
original_text = entry["text"]
|
| 272 |
+
translated_text = translator(original_text)[0]['translation_text']
|
| 273 |
+
return {
|
| 274 |
+
"start": entry["start"],
|
| 275 |
+
"original": original_text,
|
| 276 |
+
"translated": translated_text,
|
| 277 |
+
"end": entry["end"],
|
| 278 |
+
"speaker": entry["speaker"]
|
| 279 |
+
}
|
| 280 |
+
|
| 281 |
+
def translate_text(transcription_json, source_language, target_language):
|
| 282 |
+
# Load the translation model for the specified target language
|
| 283 |
+
translation_model_id = get_translation_model(source_language, target_language)
|
| 284 |
+
logger.debug(f"Translation model: {translation_model_id}")
|
| 285 |
+
translator = pipeline("translation", model=translation_model_id)
|
| 286 |
+
|
| 287 |
+
# Use ThreadPoolExecutor to parallelize translations
|
| 288 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
| 289 |
+
# Submit all translation tasks and collect results
|
| 290 |
+
translate_func = lambda entry: translate_single_entry(entry, translator)
|
| 291 |
+
translated_json = list(executor.map(translate_func, transcription_json))
|
| 292 |
+
|
| 293 |
+
# Sort the translated_json by start time
|
| 294 |
+
translated_json.sort(key=lambda x: x["start"])
|
| 295 |
+
|
| 296 |
+
# Log the components being added to translated_json
|
| 297 |
+
for entry in translated_json:
|
| 298 |
+
logger.debug("Added to translated_json: start=%s, original=%s, translated=%s, end=%s, speaker=%s",
|
| 299 |
+
entry["start"], entry["original"], entry["translated"], entry["end"], entry["speaker"])
|
| 300 |
+
|
| 301 |
+
return translated_json
|
| 302 |
+
|
| 303 |
+
def update_translations(file, edited_table, process_mode):
|
| 304 |
+
"""
|
| 305 |
+
Update the translations based on user edits in the Gradio Dataframe.
|
| 306 |
+
"""
|
| 307 |
+
output_video_path = "output_video.mp4"
|
| 308 |
+
logger.debug(f"Editable Table: {edited_table}")
|
| 309 |
+
|
| 310 |
+
if file is None:
|
| 311 |
+
logger.info("No file uploaded. Please upload a video/audio file.")
|
| 312 |
+
return None, [], None, "No file uploaded. Please upload a video/audio file."
|
| 313 |
+
|
| 314 |
+
try:
|
| 315 |
+
start_time = time.time() # Start the timer
|
| 316 |
+
|
| 317 |
+
# Convert the edited_table (list of lists) back to list of dictionaries
|
| 318 |
+
updated_translations = [
|
| 319 |
+
{
|
| 320 |
+
"start": row["start"], # Access by column name
|
| 321 |
+
"original": row["original"],
|
| 322 |
+
"translated": row["translated"],
|
| 323 |
+
"end": row["end"]
|
| 324 |
+
}
|
| 325 |
+
for _, row in edited_table.iterrows()
|
| 326 |
+
]
|
| 327 |
+
|
| 328 |
+
# Call the function to process the video with updated translations
|
| 329 |
+
add_transcript_voiceover(file.name, updated_translations, output_video_path, process_mode)
|
| 330 |
+
|
| 331 |
+
# Calculate elapsed time
|
| 332 |
+
elapsed_time = time.time() - start_time
|
| 333 |
+
elapsed_time_display = f"Updates applied successfully in {elapsed_time:.2f} seconds."
|
| 334 |
+
|
| 335 |
+
return output_video_path, elapsed_time_display
|
| 336 |
+
|
| 337 |
+
except Exception as e:
|
| 338 |
+
raise ValueError(f"Error updating translations: {e}")
|
| 339 |
+
|
| 340 |
+
def create_subtitle_clip_pil(text, start_time, end_time, video_width, video_height, font_path):
|
| 341 |
+
try:
|
| 342 |
+
subtitle_width = int(video_width * 0.8)
|
| 343 |
+
aspect_ratio = video_height / video_width
|
| 344 |
+
if aspect_ratio > 1.2: # Portrait video
|
| 345 |
+
subtitle_font_size = int(video_width // 22)
|
| 346 |
+
else: # Landscape video
|
| 347 |
+
subtitle_font_size = int(video_height // 24)
|
| 348 |
+
|
| 349 |
+
font = ImageFont.truetype(font_path, subtitle_font_size)
|
| 350 |
+
|
| 351 |
+
dummy_img = Image.new("RGBA", (subtitle_width, 1), (0, 0, 0, 0))
|
| 352 |
+
draw = ImageDraw.Draw(dummy_img)
|
| 353 |
+
|
| 354 |
+
lines = []
|
| 355 |
+
line = ""
|
| 356 |
+
for word in text.split():
|
| 357 |
+
test_line = f"{line} {word}".strip()
|
| 358 |
+
bbox = draw.textbbox((0, 0), test_line, font=font)
|
| 359 |
+
w = bbox[2] - bbox[0]
|
| 360 |
+
if w <= subtitle_width - 10:
|
| 361 |
+
line = test_line
|
| 362 |
+
else:
|
| 363 |
+
lines.append(line)
|
| 364 |
+
line = word
|
| 365 |
+
lines.append(line)
|
| 366 |
+
|
| 367 |
+
line_heights = [draw.textbbox((0, 0), l, font=font)[3] - draw.textbbox((0, 0), l, font=font)[1] for l in lines]
|
| 368 |
+
total_height = sum(line_heights) + (len(lines) - 1) * 5
|
| 369 |
+
img = Image.new("RGBA", (subtitle_width, total_height), (0, 0, 0, 0))
|
| 370 |
+
draw = ImageDraw.Draw(img)
|
| 371 |
+
|
| 372 |
+
y = 0
|
| 373 |
+
for idx, line in enumerate(lines):
|
| 374 |
+
bbox = draw.textbbox((0, 0), line, font=font)
|
| 375 |
+
w = bbox[2] - bbox[0]
|
| 376 |
+
draw.text(((subtitle_width - w) // 2, y), line, font=font, fill="yellow")
|
| 377 |
+
y += line_heights[idx] + 5
|
| 378 |
+
|
| 379 |
+
img_np = np.array(img) # <- ✅ Fix: convert to NumPy
|
| 380 |
+
txt_clip = ImageClip(img_np).set_start(start_time).set_duration(end_time - start_time).set_position("bottom").set_opacity(0.8)
|
| 381 |
+
return txt_clip
|
| 382 |
+
except Exception as e:
|
| 383 |
+
logger.error(f"\u274c Failed to create subtitle clip: {e}")
|
| 384 |
+
return None
|
| 385 |
+
|
| 386 |
+
def solve_optimal_alignment(original_segments, generated_durations, total_duration):
|
| 387 |
+
"""
|
| 388 |
+
Robust version: Aligns generated speech segments, falls back to greedy allocation if solver fails.
|
| 389 |
+
Modifies and returns the translated_json with updated 'start' and 'end'.
|
| 390 |
+
"""
|
| 391 |
+
N = len(original_segments)
|
| 392 |
+
d = np.array(generated_durations)
|
| 393 |
+
m = np.array([(seg['start'] + seg['end']) / 2 for seg in original_segments])
|
| 394 |
+
|
| 395 |
+
try:
|
| 396 |
+
s = cp.Variable(N)
|
| 397 |
+
objective = cp.Minimize(cp.sum_squares(s + d / 2 - m))
|
| 398 |
+
|
| 399 |
+
constraints = [s[0] >= 0]
|
| 400 |
+
for i in range(N - 1):
|
| 401 |
+
constraints.append(s[i] + d[i] <= s[i + 1])
|
| 402 |
+
constraints.append(s[N - 1] + d[N - 1] == total_duration)
|
| 403 |
+
|
| 404 |
+
problem = cp.Problem(objective, constraints)
|
| 405 |
+
problem.solve()
|
| 406 |
+
|
| 407 |
+
if s.value is None:
|
| 408 |
+
raise ValueError("Solver failed")
|
| 409 |
+
|
| 410 |
+
for i in range(N):
|
| 411 |
+
original_segments[i]['start'] = round(s.value[i], 3)
|
| 412 |
+
original_segments[i]['end'] = round(s.value[i] + d[i], 3)
|
| 413 |
+
|
| 414 |
+
except Exception as e:
|
| 415 |
+
print(f"⚠️ Optimization failed: {e}, falling back to greedy alignment.")
|
| 416 |
+
|
| 417 |
+
current_time = 0.0
|
| 418 |
+
for i in range(N):
|
| 419 |
+
original_segments[i]['start'] = round(current_time, 3)
|
| 420 |
+
original_segments[i]['end'] = round(current_time + generated_durations[i], 3)
|
| 421 |
+
current_time += generated_durations[i]
|
| 422 |
+
|
| 423 |
+
return original_segments
|
| 424 |
+
def process_entry(entry, i, tts_model, video_width, video_height, process_mode, target_language, font_path, speaker_sample_paths=None):
|
| 425 |
+
logger.debug(f"Processing entry {i}: {entry}")
|
| 426 |
+
error_message = None
|
| 427 |
+
|
| 428 |
+
try:
|
| 429 |
+
txt_clip = create_subtitle_clip_pil(entry["translated"], entry["start"], entry["end"], video_width, video_height, font_path)
|
| 430 |
+
except Exception as e:
|
| 431 |
+
error_message = f"❌ Failed to create subtitle clip for entry {i}: {e}"
|
| 432 |
+
logger.error(error_message)
|
| 433 |
+
txt_clip = None
|
| 434 |
+
|
| 435 |
+
audio_segment = None
|
| 436 |
+
actual_duration = 0.0
|
| 437 |
+
if process_mode > 1:
|
| 438 |
+
try:
|
| 439 |
+
segment_audio_path = f"segment_{i}_voiceover.wav"
|
| 440 |
+
desired_duration = entry["end"] - entry["start"]
|
| 441 |
+
desired_speed = calibrated_speed(entry['translated'], desired_duration)
|
| 442 |
+
|
| 443 |
+
speaker = entry.get("speaker", "default")
|
| 444 |
+
speaker_wav_path = f"speaker_{speaker}_sample.wav"
|
| 445 |
+
|
| 446 |
+
supported_languages = tts_model.synthesizer.tts_model.language_manager.name_to_id.keys()
|
| 447 |
+
|
| 448 |
+
if process_mode > 2 and speaker_wav_path and os.path.exists(speaker_wav_path) and target_language in supported_languages:
|
| 449 |
+
generate_voiceover_clone(entry['translated'], tts_model, desired_speed, target_language, speaker_wav_path, segment_audio_path)
|
| 450 |
+
else:
|
| 451 |
+
generate_voiceover_OpenAI(entry['translated'], target_language, desired_speed, segment_audio_path)
|
| 452 |
+
|
| 453 |
+
if not segment_audio_path or not os.path.exists(segment_audio_path):
|
| 454 |
+
raise FileNotFoundError(f"Voiceover file not generated at: {segment_audio_path}")
|
| 455 |
+
|
| 456 |
+
audio_clip = AudioFileClip(segment_audio_path)
|
| 457 |
+
actual_duration = audio_clip.duration
|
| 458 |
+
|
| 459 |
+
audio_segment = audio_clip # Do not set start here, alignment happens later
|
| 460 |
+
|
| 461 |
+
except Exception as e:
|
| 462 |
+
err = f"❌ Failed to generate audio segment for entry {i}: {e}"
|
| 463 |
+
logger.error(err)
|
| 464 |
+
error_message = error_message + " | " + err if error_message else err
|
| 465 |
+
audio_segment = None
|
| 466 |
+
|
| 467 |
+
return i, txt_clip, audio_segment, actual_duration, error_message
|
| 468 |
+
|
| 469 |
+
|
| 470 |
+
def add_transcript_voiceover(video_path, translated_json, output_path, process_mode, target_language="en", speaker_sample_paths=None, background_audio_path="background_segments.wav"):
|
| 471 |
+
|
| 472 |
+
video = VideoFileClip(video_path)
|
| 473 |
+
font_path = "./NotoSansSC-Regular.ttf"
|
| 474 |
+
|
| 475 |
+
text_clips = []
|
| 476 |
+
audio_segments = []
|
| 477 |
+
actual_durations = []
|
| 478 |
+
error_messages = []
|
| 479 |
+
|
| 480 |
+
if process_mode == 3:
|
| 481 |
+
global tts_model
|
| 482 |
+
if tts_model is None:
|
| 483 |
+
try:
|
| 484 |
+
print("🔄 Loading XTTS model...")
|
| 485 |
+
from TTS.api import TTS
|
| 486 |
+
tts_model = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts")
|
| 487 |
+
print("✅ XTTS model loaded successfully.")
|
| 488 |
+
except Exception as e:
|
| 489 |
+
print("❌ Error loading XTTS model:")
|
| 490 |
+
traceback.print_exc()
|
| 491 |
+
return f"Error loading XTTS model: {e}"
|
| 492 |
+
|
| 493 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
| 494 |
+
futures = [executor.submit(process_entry, entry, i, tts_model, video.w, video.h, process_mode, target_language, font_path, speaker_sample_paths)
|
| 495 |
+
for i, entry in enumerate(translated_json)]
|
| 496 |
+
|
| 497 |
+
results = []
|
| 498 |
+
for future in concurrent.futures.as_completed(futures):
|
| 499 |
+
try:
|
| 500 |
+
i, txt_clip, audio_segment, actual_duration, error = future.result()
|
| 501 |
+
results.append((i, txt_clip, audio_segment, actual_duration))
|
| 502 |
+
if error:
|
| 503 |
+
error_messages.append(f"[Entry {i}] {error}")
|
| 504 |
+
except Exception as e:
|
| 505 |
+
err = f"❌ Unexpected error in future result: {e}"
|
| 506 |
+
error_messages.append(err)
|
| 507 |
+
|
| 508 |
+
results.sort(key=lambda x: x[0])
|
| 509 |
+
text_clips = [clip for _, clip, _, _ in results if clip]
|
| 510 |
+
generated_durations = [dur for _, _, _, dur in results if dur > 0]
|
| 511 |
+
|
| 512 |
+
# Align using optimization (modifies translated_json in-place)
|
| 513 |
+
translated_json = solve_optimal_alignment(translated_json, generated_durations, video.duration)
|
| 514 |
+
|
| 515 |
+
# Set aligned timings
|
| 516 |
+
audio_segments = []
|
| 517 |
+
for i, entry in enumerate(translated_json):
|
| 518 |
+
segment = results[i][2] # AudioFileClip
|
| 519 |
+
if segment:
|
| 520 |
+
segment = segment.set_start(entry['start']).set_duration(entry['end'] - entry['start'])
|
| 521 |
+
audio_segments.append(segment)
|
| 522 |
+
|
| 523 |
+
final_video = CompositeVideoClip([video] + text_clips)
|
| 524 |
+
|
| 525 |
+
if process_mode > 1 and audio_segments:
|
| 526 |
+
try:
|
| 527 |
+
voice_audio = CompositeAudioClip(audio_segments).set_duration(video.duration)
|
| 528 |
+
|
| 529 |
+
if background_audio_path and os.path.exists(background_audio_path):
|
| 530 |
+
background_audio = AudioFileClip(background_audio_path).set_duration(video.duration)
|
| 531 |
+
final_audio = CompositeAudioClip([voice_audio, background_audio])
|
| 532 |
+
else:
|
| 533 |
+
final_audio = voice_audio
|
| 534 |
+
|
| 535 |
+
final_video = final_video.set_audio(final_audio)
|
| 536 |
+
|
| 537 |
+
except Exception as e:
|
| 538 |
+
print(f"❌ Failed to set audio: {e}")
|
| 539 |
+
|
| 540 |
+
final_video.write_videofile(output_path, codec="libx264", audio_codec="aac")
|
| 541 |
+
|
| 542 |
+
return error_messages
|
| 543 |
+
|
| 544 |
+
def generate_voiceover_OpenAI(full_text, language, desired_speed, output_audio_path):
|
| 545 |
+
"""
|
| 546 |
+
Generate voiceover from translated text for a given language using OpenAI TTS API.
|
| 547 |
+
"""
|
| 548 |
+
# Define the voice based on the language (for now, use 'alloy' as default)
|
| 549 |
+
voice = "alloy" # Adjust based on language if needed
|
| 550 |
+
|
| 551 |
+
# Define the model (use tts-1 for real-time applications)
|
| 552 |
+
model = "tts-1"
|
| 553 |
+
|
| 554 |
+
max_retries = 3
|
| 555 |
+
retry_count = 0
|
| 556 |
+
|
| 557 |
+
while retry_count < max_retries:
|
| 558 |
+
try:
|
| 559 |
+
# Create the speech using OpenAI TTS API
|
| 560 |
+
response = client.audio.speech.create(
|
| 561 |
+
model=model,
|
| 562 |
+
voice=voice,
|
| 563 |
+
input=full_text,
|
| 564 |
+
speed=desired_speed
|
| 565 |
+
)
|
| 566 |
+
# Save the audio to the specified path
|
| 567 |
+
with open(output_audio_path, 'wb') as f:
|
| 568 |
+
for chunk in response.iter_bytes():
|
| 569 |
+
f.write(chunk)
|
| 570 |
+
logging.info(f"Voiceover generated successfully for {output_audio_path}")
|
| 571 |
+
break
|
| 572 |
+
|
| 573 |
+
except Exception as e:
|
| 574 |
+
retry_count += 1
|
| 575 |
+
logging.error(f"Error generating voiceover (retry {retry_count}/{max_retries}): {e}")
|
| 576 |
+
time.sleep(5) # Wait 5 seconds before retrying
|
| 577 |
+
|
| 578 |
+
if retry_count == max_retries:
|
| 579 |
+
raise ValueError(f"Failed to generate voiceover after {max_retries} retries.")
|
| 580 |
+
|
| 581 |
+
def generate_voiceover_clone(full_text, tts_model, desired_speed, target_language, speaker_wav_path, output_audio_path):
|
| 582 |
+
try:
|
| 583 |
+
|
| 584 |
+
tts_model.tts_to_file(
|
| 585 |
+
text=full_text,
|
| 586 |
+
speaker_wav=speaker_wav_path,
|
| 587 |
+
language=target_language,
|
| 588 |
+
file_path=output_audio_path,
|
| 589 |
+
speed=desired_speed,
|
| 590 |
+
split_sentences=True
|
| 591 |
+
)
|
| 592 |
+
msg = "✅ Voice cloning completed successfully."
|
| 593 |
+
logger.info(msg)
|
| 594 |
+
return output_audio_path, msg, None
|
| 595 |
+
|
| 596 |
+
except Exception as e:
|
| 597 |
+
generate_voiceover_OpenAI(full_text, target_language, desired_speed, output_audio_path)
|
| 598 |
+
err_msg = f"❌ An error occurred: {str(e)}, fallback to premium voice"
|
| 599 |
+
logger.error(traceback.format_exc())
|
| 600 |
+
return None, err_msg, err_msg
|
| 601 |
+
|
| 602 |
+
def calibrated_speed(text, desired_duration):
|
| 603 |
+
"""
|
| 604 |
+
Compute a speed factor to help TTS fit audio into desired duration,
|
| 605 |
+
using a simple truncated linear function of characters per second.
|
| 606 |
+
"""
|
| 607 |
+
char_count = len(text.strip())
|
| 608 |
+
if char_count == 0 or desired_duration <= 0:
|
| 609 |
+
return 1.0 # fallback
|
| 610 |
+
|
| 611 |
+
cps = char_count / desired_duration # characters per second
|
| 612 |
+
|
| 613 |
+
# Truncated linear mapping
|
| 614 |
+
if cps < 14:
|
| 615 |
+
return 1.0
|
| 616 |
+
elif cps > 30:
|
| 617 |
+
return 2
|
| 618 |
+
else:
|
| 619 |
+
slope = (2 - 1.0) / (30 - 14)
|
| 620 |
+
return 1.0 + slope * (cps - 14)
|
| 621 |
+
|
| 622 |
+
def upload_and_manage(file, target_language, process_mode):
|
| 623 |
+
if file is None:
|
| 624 |
+
logger.info("No file uploaded. Please upload a video/audio file.")
|
| 625 |
+
return None, [], None, "No file uploaded. Please upload a video/audio file."
|
| 626 |
+
|
| 627 |
+
try:
|
| 628 |
+
start_time = time.time() # Start the timer
|
| 629 |
+
logger.info(f"Started processing file: {file.name}")
|
| 630 |
+
|
| 631 |
+
# Define paths for audio and output files
|
| 632 |
+
audio_path = "audio.wav"
|
| 633 |
+
output_video_path = "output_video.mp4"
|
| 634 |
+
voiceover_path = "voiceover.wav"
|
| 635 |
+
logger.info(f"Using audio path: {audio_path}, output video path: {output_video_path}, voiceover path: {voiceover_path}")
|
| 636 |
+
|
| 637 |
+
# Step 1: Transcribe audio from uploaded media file and get timestamps
|
| 638 |
+
logger.info("Transcribing audio...")
|
| 639 |
+
transcription_json, source_language = transcribe_video_with_speakers(file.name)
|
| 640 |
+
logger.info(f"Transcription completed. Detected source language: {source_language}")
|
| 641 |
+
|
| 642 |
+
# Step 2: Translate the transcription
|
| 643 |
+
logger.info(f"Translating transcription from {source_language} to {target_language}...")
|
| 644 |
+
translated_json = translate_text(transcription_json, source_language, target_language)
|
| 645 |
+
logger.info(f"Translation completed. Number of translated segments: {len(translated_json)}")
|
| 646 |
+
|
| 647 |
+
# Step 3: Add transcript to video based on timestamps
|
| 648 |
+
logger.info("Adding translated transcript to video...")
|
| 649 |
+
add_transcript_voiceover(file.name, translated_json, output_video_path, process_mode, target_language)
|
| 650 |
+
logger.info(f"Transcript added to video. Output video saved at {output_video_path}")
|
| 651 |
+
|
| 652 |
+
# Convert translated JSON into a format for the editable table
|
| 653 |
+
logger.info("Converting translated JSON into editable table format...")
|
| 654 |
+
editable_table = [
|
| 655 |
+
[float(entry["start"]), entry["original"], entry["translated"], float(entry["end"]), entry["speaker"]]
|
| 656 |
+
for entry in translated_json
|
| 657 |
+
]
|
| 658 |
+
|
| 659 |
+
# Calculate elapsed time
|
| 660 |
+
elapsed_time = time.time() - start_time
|
| 661 |
+
elapsed_time_display = f"Processing completed in {elapsed_time:.2f} seconds."
|
| 662 |
+
logger.info(f"Processing completed in {elapsed_time:.2f} seconds.")
|
| 663 |
+
|
| 664 |
+
return editable_table, output_video_path, elapsed_time_display
|
| 665 |
+
|
| 666 |
+
except Exception as e:
|
| 667 |
+
logger.error(f"An error occurred: {str(e)}")
|
| 668 |
+
return [], None, f"An error occurred: {str(e)}"
|
| 669 |
+
|
| 670 |
+
# Gradio Interface with Tabs
|
| 671 |
+
def build_interface():
|
| 672 |
+
with gr.Blocks(css=css) as demo:
|
| 673 |
+
gr.Markdown("## Video Localization")
|
| 674 |
+
with gr.Row():
|
| 675 |
+
with gr.Column(scale=4):
|
| 676 |
+
file_input = gr.File(label="Upload Video/Audio File")
|
| 677 |
+
language_input = gr.Dropdown(["en", "es", "fr", "zh"], label="Select Language") # Language codes
|
| 678 |
+
process_mode = gr.Radio(choices=[("Transcription Only", 1),("Transcription with Premium Voice",2),("Transcription with Voice Clone", 3)],label="Choose Processing Type",value=1)
|
| 679 |
+
submit_button = gr.Button("Post and Process")
|
| 680 |
+
|
| 681 |
+
with gr.Column(scale=8):
|
| 682 |
+
gr.Markdown("## Edit Translations")
|
| 683 |
+
|
| 684 |
+
# Editable JSON Data
|
| 685 |
+
editable_table = gr.Dataframe(
|
| 686 |
+
value=[], # Default to an empty list to avoid undefined values
|
| 687 |
+
headers=["start", "original", "translated", "end", "speaker"],
|
| 688 |
+
datatype=["number", "str", "str", "number", "str"],
|
| 689 |
+
row_count=1, # Initially empty
|
| 690 |
+
col_count=5,
|
| 691 |
+
interactive=[False, True, True, False, False], # Control editability
|
| 692 |
+
label="Edit Translations",
|
| 693 |
+
wrap=True # Enables text wrapping if supported
|
| 694 |
+
)
|
| 695 |
+
save_changes_button = gr.Button("Save Changes")
|
| 696 |
+
processed_video_output = gr.File(label="Download Processed Video", interactive=True) # Download button
|
| 697 |
+
elapsed_time_display = gr.Textbox(label="Elapsed Time", lines=1, interactive=False)
|
| 698 |
+
|
| 699 |
+
with gr.Column(scale=1):
|
| 700 |
+
gr.Markdown("**Feedback**")
|
| 701 |
+
feedback_input = gr.Textbox(
|
| 702 |
+
placeholder="Leave your feedback here...",
|
| 703 |
+
label=None,
|
| 704 |
+
lines=3,
|
| 705 |
+
)
|
| 706 |
+
feedback_btn = gr.Button("Submit Feedback")
|
| 707 |
+
response_message = gr.Textbox(label=None, lines=1, interactive=False)
|
| 708 |
+
db_download = gr.File(label="Download Database File", visible=False)
|
| 709 |
+
|
| 710 |
+
# Link the feedback handling
|
| 711 |
+
def feedback_submission(feedback):
|
| 712 |
+
message, file_path = handle_feedback(feedback)
|
| 713 |
+
if file_path:
|
| 714 |
+
return message, gr.update(value=file_path, visible=True)
|
| 715 |
+
return message, gr.update(visible=False)
|
| 716 |
+
|
| 717 |
+
save_changes_button.click(
|
| 718 |
+
update_translations,
|
| 719 |
+
inputs=[file_input, editable_table, process_mode],
|
| 720 |
+
outputs=[processed_video_output, elapsed_time_display]
|
| 721 |
+
)
|
| 722 |
+
|
| 723 |
+
submit_button.click(
|
| 724 |
+
upload_and_manage,
|
| 725 |
+
inputs=[file_input, language_input, process_mode],
|
| 726 |
+
outputs=[editable_table, processed_video_output, elapsed_time_display]
|
| 727 |
+
)
|
| 728 |
+
|
| 729 |
+
# Connect submit button to save_feedback_db function
|
| 730 |
+
feedback_btn.click(
|
| 731 |
+
feedback_submission,
|
| 732 |
+
inputs=[feedback_input],
|
| 733 |
+
outputs=[response_message, db_download]
|
| 734 |
+
)
|
| 735 |
+
|
| 736 |
+
return demo
|
| 737 |
+
|
| 738 |
+
tts_model = None
|
| 739 |
+
# Launch the Gradio interface
|
| 740 |
+
demo = build_interface()
|
| 741 |
+
demo.launch()
|
apt.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
espeak
|
| 2 |
+
ffmpeg
|
| 3 |
+
libsm6
|
| 4 |
+
libxext6
|
| 5 |
+
git
|
| 6 |
+
git-lfs
|
| 7 |
+
libgl1-mesa-glx
|
| 8 |
+
cmake
|
| 9 |
+
rsync
|
requirements.txt
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Core compatibility
|
| 2 |
+
numpy==1.26.4
|
| 3 |
+
transformers==4.49.0
|
| 4 |
+
# Coqui TTS (XTTS v2)
|
| 5 |
+
coqpit-config
|
| 6 |
+
coqui-tts==0.26.0
|
| 7 |
+
coqui-tts-trainer==0.2.3
|
| 8 |
+
torch==2.6.0 # Or the version best suited for your GPU/CPU
|
| 9 |
+
# Video Processing
|
| 10 |
+
moviepy==1.0.3
|
| 11 |
+
# Web Interface
|
| 12 |
+
gradio==5.23.3
|
| 13 |
+
# Audio Utilities (optional but often used)
|
| 14 |
+
soundfile
|
| 15 |
+
librosa
|
| 16 |
+
SpeechRecognition
|
| 17 |
+
whisperx==3.3.1
|
| 18 |
+
openai
|
| 19 |
+
pillow
|
| 20 |
+
cvxpy
|
| 21 |
+
# pyannote.audio
|
| 22 |
+
# torchaudio
|
speaker_default_sample.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d63e6190a950695c5cfa697f263c230e6f682be8822971ccaea67a8318a2d747
|
| 3 |
+
size 1800056
|