Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -288,53 +288,41 @@ def segment_audio_from_video(video_path):
|
|
288 |
|
289 |
segment_result, speech_audio_path = segment_background_audio(audio_path)
|
290 |
print(f"Saved non-speech (background) audio to local")
|
291 |
-
|
292 |
-
# Set up device
|
293 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
294 |
logger.info(f"Using device: {device}")
|
295 |
-
|
296 |
try:
|
297 |
-
# Load a medium model with float32 for broader compatibility
|
298 |
model = whisperx.load_model("large-v3", device=device, compute_type="float32")
|
299 |
logger.info("WhisperX model loaded")
|
300 |
-
|
301 |
-
# Transcribe
|
302 |
-
result = model.transcribe(speech_audio_path, chunk_size=4, print_progress = True)
|
303 |
logger.info("Audio transcription completed")
|
304 |
-
|
305 |
except Exception as e:
|
306 |
logger.error(f"❌ WhisperX pipeline failed: {e}")
|
|
|
307 |
|
308 |
-
#
|
309 |
transcript_with_speakers = [
|
310 |
{
|
311 |
"start": segment["start"],
|
312 |
"end": segment["end"]
|
313 |
}
|
314 |
for segment in result["segments"]
|
|
|
315 |
]
|
316 |
|
317 |
return audio_path, transcript_with_speakers
|
318 |
|
319 |
-
def
|
320 |
-
"""
|
321 |
-
|
322 |
-
|
|
|
|
|
323 |
|
324 |
-
|
325 |
-
full_audio_path (str): The path to the full extracted audio file.
|
326 |
-
segments (list): A list of dictionaries, where each dictionary
|
327 |
-
represents a segment with 'start' and 'end' timestamps in seconds.
|
328 |
-
|
329 |
-
Returns:
|
330 |
-
tuple: A tuple containing:
|
331 |
-
- transcribed_segments (list): A list of dictionaries, where each dictionary
|
332 |
-
represents a transcribed segment with 'start', 'end', and 'text'.
|
333 |
-
- detected_language (str): The language detected by the API (e.g., "en", "es").
|
334 |
-
- error_message (str, optional): An error message if transcription fails.
|
335 |
-
"""
|
336 |
transcribed_segments = []
|
337 |
-
detected_language = "unknown"
|
338 |
error_message = None
|
339 |
|
340 |
if not os.path.exists(full_audio_path):
|
@@ -342,94 +330,63 @@ def transcribe_segments_with_scribe(full_audio_path, segments):
|
|
342 |
|
343 |
try:
|
344 |
audio_clip = AudioFileClip(full_audio_path)
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
}
|
349 |
-
data = {
|
350 |
-
"model_id": "scribe_v1",
|
351 |
-
}
|
352 |
-
# Explicitly set diarize to false, as it's not needed.
|
353 |
-
params = {
|
354 |
-
"diarize": "false",
|
355 |
-
}
|
356 |
|
357 |
logger.info(f"Starting transcription of {len(segments)} segments with ElevenLabs Scribe...")
|
358 |
|
359 |
for i, segment in enumerate(segments):
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
# Ensure segment duration is positive
|
364 |
-
if segment_end <= segment_start:
|
365 |
-
logger.warning(f"Skipping segment {i} due to invalid duration: {segment_start:.2f}s -> {segment_end:.2f}s")
|
366 |
continue
|
367 |
|
368 |
temp_segment_audio_path = f"temp_segment_{i}.wav"
|
369 |
try:
|
370 |
-
|
371 |
-
sub_clip = audio_clip.subclip(segment_start, segment_end)
|
372 |
-
# Save as 16-bit PCM WAV for Scribe API compatibility
|
373 |
sub_clip.write_audiofile(temp_segment_audio_path, codec='pcm_s16le')
|
374 |
-
|
375 |
-
logger.info(f"Transcribing segment {i+1}/{len(segments)}: {segment_start:.2f}s - {segment_end:.2f}s")
|
376 |
|
377 |
with open(temp_segment_audio_path, "rb") as audio_file:
|
378 |
-
files = {
|
379 |
-
"file": (os.path.basename(temp_segment_audio_path), audio_file, "audio/wav")
|
380 |
-
}
|
381 |
response = requests.post(ELEVENLABS_SCRIBE_API_URL, headers=headers, files=files, data=data, params=params)
|
382 |
response.raise_for_status()
|
383 |
scribe_result = response.json()
|
384 |
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
if segment_text:
|
393 |
transcribed_segments.append({
|
394 |
-
"start":
|
395 |
-
"end":
|
396 |
-
"text":
|
397 |
"speaker": "SPEAKER_00"
|
398 |
})
|
399 |
else:
|
400 |
-
logger.
|
401 |
|
402 |
-
# Update detected language from the first successful transcription
|
403 |
if "language_code" in scribe_result and detected_language == "unknown":
|
404 |
detected_language = scribe_result["language_code"]
|
405 |
|
406 |
-
except requests.exceptions.HTTPError as http_err:
|
407 |
-
error_message = f"HTTP error for segment {i+1}: {http_err} - {response.text}"
|
408 |
-
logger.error(error_message)
|
409 |
-
# Continue to next segment even if one fails
|
410 |
-
except requests.exceptions.RequestException as req_err:
|
411 |
-
error_message = f"Request error for segment {i+1}: {req_err}"
|
412 |
-
logger.error(error_message)
|
413 |
-
# Continue to next segment
|
414 |
except Exception as e:
|
415 |
-
|
416 |
-
logger.error(error_message)
|
417 |
-
# Continue to next segment
|
418 |
finally:
|
419 |
if os.path.exists(temp_segment_audio_path):
|
420 |
os.remove(temp_segment_audio_path)
|
421 |
-
|
422 |
logger.info("All segments processed by ElevenLabs Scribe.")
|
423 |
|
424 |
except Exception as e:
|
425 |
-
error_message = f"An error occurred
|
426 |
logger.error(error_message)
|
427 |
finally:
|
428 |
-
if 'audio_clip' in locals()
|
429 |
audio_clip.close()
|
430 |
|
431 |
return transcribed_segments, detected_language, error_message
|
432 |
-
|
433 |
|
434 |
# Function to get the appropriate translation model based on target language
|
435 |
def get_translation_model(source_language, target_language):
|
|
|
288 |
|
289 |
segment_result, speech_audio_path = segment_background_audio(audio_path)
|
290 |
print(f"Saved non-speech (background) audio to local")
|
291 |
+
|
|
|
292 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
293 |
logger.info(f"Using device: {device}")
|
294 |
+
|
295 |
try:
|
|
|
296 |
model = whisperx.load_model("large-v3", device=device, compute_type="float32")
|
297 |
logger.info("WhisperX model loaded")
|
298 |
+
result = model.transcribe(speech_audio_path, chunk_size=4, print_progress=True)
|
|
|
|
|
299 |
logger.info("Audio transcription completed")
|
|
|
300 |
except Exception as e:
|
301 |
logger.error(f"❌ WhisperX pipeline failed: {e}")
|
302 |
+
return audio_path, []
|
303 |
|
304 |
+
# Return segment boundaries (only timestamps, not text)
|
305 |
transcript_with_speakers = [
|
306 |
{
|
307 |
"start": segment["start"],
|
308 |
"end": segment["end"]
|
309 |
}
|
310 |
for segment in result["segments"]
|
311 |
+
if segment["end"] > segment["start"]
|
312 |
]
|
313 |
|
314 |
return audio_path, transcript_with_speakers
|
315 |
|
316 |
+
def clean_transcribed_text(text: str) -> str:
|
317 |
+
"""Remove repetitive symbols and artifacts from text."""
|
318 |
+
# Remove only-punctuation or repeated tokens
|
319 |
+
cleaned = re.sub(r"[_,.~`^•·。!?!?,,\.\/\\\-–—=+]+", " ", text)
|
320 |
+
cleaned = re.sub(r"\s+", " ", cleaned).strip()
|
321 |
+
return cleaned
|
322 |
|
323 |
+
def transcribe_segments_with_scribe(full_audio_path, segments):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
transcribed_segments = []
|
325 |
+
detected_language = "unknown"
|
326 |
error_message = None
|
327 |
|
328 |
if not os.path.exists(full_audio_path):
|
|
|
330 |
|
331 |
try:
|
332 |
audio_clip = AudioFileClip(full_audio_path)
|
333 |
+
headers = {"xi-api-key": ELEVENLABS_API_KEY}
|
334 |
+
data = {"model_id": "scribe_v1"}
|
335 |
+
params = {"diarize": "false"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
|
337 |
logger.info(f"Starting transcription of {len(segments)} segments with ElevenLabs Scribe...")
|
338 |
|
339 |
for i, segment in enumerate(segments):
|
340 |
+
start, end = segment["start"], segment["end"]
|
341 |
+
if end <= start:
|
342 |
+
logger.warning(f"Skipping invalid segment {i}: {start:.2f}s → {end:.2f}s")
|
|
|
|
|
|
|
343 |
continue
|
344 |
|
345 |
temp_segment_audio_path = f"temp_segment_{i}.wav"
|
346 |
try:
|
347 |
+
sub_clip = audio_clip.subclip(start, end)
|
|
|
|
|
348 |
sub_clip.write_audiofile(temp_segment_audio_path, codec='pcm_s16le')
|
|
|
|
|
349 |
|
350 |
with open(temp_segment_audio_path, "rb") as audio_file:
|
351 |
+
files = {"file": (os.path.basename(temp_segment_audio_path), audio_file, "audio/wav")}
|
|
|
|
|
352 |
response = requests.post(ELEVENLABS_SCRIBE_API_URL, headers=headers, files=files, data=data, params=params)
|
353 |
response.raise_for_status()
|
354 |
scribe_result = response.json()
|
355 |
|
356 |
+
raw_text = scribe_result.get("text") or " ".join(
|
357 |
+
[w.get("text", "") for w in scribe_result.get("words", []) if w.get("type") == "word"]
|
358 |
+
)
|
359 |
+
|
360 |
+
cleaned_text = clean_transcribed_text(raw_text)
|
361 |
+
if cleaned_text:
|
|
|
|
|
362 |
transcribed_segments.append({
|
363 |
+
"start": start,
|
364 |
+
"end": end,
|
365 |
+
"text": cleaned_text,
|
366 |
"speaker": "SPEAKER_00"
|
367 |
})
|
368 |
else:
|
369 |
+
logger.info(f"Segment {i+1} discarded: cleaned text is empty.")
|
370 |
|
|
|
371 |
if "language_code" in scribe_result and detected_language == "unknown":
|
372 |
detected_language = scribe_result["language_code"]
|
373 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
except Exception as e:
|
375 |
+
logger.error(f"Error processing segment {i+1}: {e}")
|
|
|
|
|
376 |
finally:
|
377 |
if os.path.exists(temp_segment_audio_path):
|
378 |
os.remove(temp_segment_audio_path)
|
379 |
+
|
380 |
logger.info("All segments processed by ElevenLabs Scribe.")
|
381 |
|
382 |
except Exception as e:
|
383 |
+
error_message = f"An error occurred: {e}"
|
384 |
logger.error(error_message)
|
385 |
finally:
|
386 |
+
if 'audio_clip' in locals():
|
387 |
audio_clip.close()
|
388 |
|
389 |
return transcribed_segments, detected_language, error_message
|
|
|
390 |
|
391 |
# Function to get the appropriate translation model based on target language
|
392 |
def get_translation_model(source_language, target_language):
|