File size: 5,426 Bytes
35cbec8
b50ea7f
 
35cbec8
 
b50ea7f
eb40ae9
b50ea7f
 
eb40ae9
 
b50ea7f
 
 
 
eb40ae9
 
 
 
 
b50ea7f
 
 
 
66c82d4
b50ea7f
 
eb40ae9
b50ea7f
 
eb40ae9
b50ea7f
eb40ae9
 
b50ea7f
 
eb40ae9
b50ea7f
 
 
 
 
 
 
 
 
 
eb40ae9
 
 
 
 
b50ea7f
 
 
 
 
 
 
 
 
 
 
eb40ae9
b50ea7f
eb40ae9
b50ea7f
eb40ae9
b50ea7f
 
ac403f9
7afc79c
ac403f9
b50ea7f
 
eb40ae9
b50ea7f
eb40ae9
 
 
 
b50ea7f
 
 
 
 
 
 
 
eb40ae9
 
b50ea7f
eb40ae9
b50ea7f
 
 
 
eb40ae9
b50ea7f
 
 
eb40ae9
 
 
 
b50ea7f
 
 
 
 
 
 
 
eb40ae9
 
b50ea7f
 
eb40ae9
 
 
 
 
 
 
 
b50ea7f
 
 
 
 
 
eb40ae9
b50ea7f
 
eb40ae9
 
 
 
 
 
 
 
 
 
 
b50ea7f
 
bdbb3f0
b50ea7f
 
eb40ae9
b50ea7f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib"
os.environ["XDG_CACHE_HOME"] = "/tmp/fontconfig"

import json
import random
import tempfile
from pathlib import Path

import numpy as np
import pandas as pd
import gradio as gr

from cxglearner.parser import Parser
from cxglearner.config import DefaultConfigs, Config
from cxglearner.utils import init_logger
from cxglearner.utils.utils_cxs import convert_slots_to_str

MAX_EXAMPLAR = 8

examples = [
    ["She should be more polite with the customers."],
    ["She said, \"I am tired.\" She said that she was tired."],
    ["The advantage of a bad memory is that one enjoys several times the same good things for the first time."],
]

cache_dir = Path(tempfile.gettempdir()) / "cxg"
cache_dir.mkdir(exist_ok=True)
config = Config(DefaultConfigs.eng)
config.experiment.log_path = cache_dir / "cxg.log"
logger = init_logger(config)

parser_1_0 = Parser(config=config, version="1.0", logger=logger, cache_dir=cache_dir)
parser_1_1 = Parser(config=config, version="1.1", logger=logger, cache_dir=cache_dir)

examplars_1_0 = json.load(open("data/eng/1.0/learner_examplar_1.0.json", "r", encoding="utf-8"))
examplars_1_1 = json.load(open("data/eng/1.1/learner_examplar_1.1.json", "r", encoding="utf-8"))

metadata = {
    "English": {
        "1.0": [parser_1_0, examplars_1_0],
        "1.1": [parser_1_1, examplars_1_1],
    },
    "Chinese": {},
}

def fill_input_box(example):
    return example[0]


def clear_text():
    return "", pd.DataFrame(), gr.Radio(label="Constructions", choices=[]), pd.DataFrame()


def parse_text(text, language, version):
    if not text: 
        return pd.DataFrame(), gr.Radio(label="Constructions", choices=[]), pd.DataFrame()

    print(language, version, text)

    parser = metadata[language][version][0]
    encoded_elements = parser.encoder.encode(text, raw=True)
    tokens, upos, xpos = np.array(encoded_elements["lexical"]), np.array(encoded_elements["upos"]["spaCy"]), np.array(encoded_elements["xpos"]["spaCy"])
    encoded_elements = np.vstack((tokens, upos, xpos))

    radio_parsed = parser.parse(text)
    radio_parsed = ["{} | {} | {}-{}".format(cxs[0],convert_slots_to_str(parser.cxs_decoder[cxs[0]], parser.encoder, logger), cxs[1] + 1, cxs[2]) for cxs in radio_parsed[0]]

    if len(radio_parsed) == 0:
        radio_display = gr.Radio(label="Constructions", choices=[])
    else: 
        radio_display = gr.Radio(label="Constructions", choices=radio_parsed, interactive=True, value=radio_parsed[0])

    if len(radio_parsed) == 0:
        cons_display = pd.DataFrame()
    else:
        cxs = radio_parsed[0]
        index, cxs, ranges = cxs.split("|")
        cxs = cxs.strip()

        examplars = metadata[language][version][1]

        columns_name = cxs

        if version == "1.0":
            cxs = cxs.replace('Ġ', '')
        
        if cxs in examplars:
            exams = random.choices(examplars[cxs], k=min(MAX_EXAMPLAR, len(examplars[cxs])))
            cons_display =  pd.DataFrame(exams, columns=[columns_name])
        else:
            cons_display = pd.DataFrame()
        
    return encoded_elements, radio_display, cons_display


def refresh_examplar(option, language, version):
    
    print(language, version, option)

    index, cxs, ranges = option.split("|")
    index = eval(index)
    cxs = cxs.strip()

    examplars = metadata[language][version][1]

    columns_name = cxs

    if version == "1.0":
        cxs = cxs.replace('Ġ', '')

    if cxs in examplars:
        exams = random.choices(examplars[cxs], k=min(MAX_EXAMPLAR, len(examplars[cxs])))
        return pd.DataFrame(exams, columns=[columns_name])
    
    return pd.DataFrame()


with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown("## CxGLearner Parser")
        with gr.Row():
            input_text = gr.Textbox(label="Input Text", placeholder="Enter a sentence here...")
            
        with gr.Row():
            dataset = gr.Dataset(components=[input_text], samples=examples, label="Make a Choice")
            with gr.Row():
                language_radio = gr.Radio(["English", "Chinese"], value="English", interactive=False, label="Which language would you like to parse?")
                version_radio = gr.Radio(["1.1", "1.0"], value="1.1", interactive=True, label="Which version would you like to use?")
        with gr.Row():
                clear_buttton = gr.Button("Clear")
                parser_button = gr.Button("Parse")

    with gr.Column():
        gr.Markdown("### Results of Encoding and Parsing")
        enc_display = gr.Dataframe()
        cxs_display = gr.Radio(label="Constructions", choices=[])

    with gr.Column():
        gr.Markdown("### Examplars")
        cons_display = gr.Dataframe()

    dataset.click(fn=fill_input_box, inputs=dataset, outputs=input_text)
    clear_buttton.click(fn=clear_text, inputs=[], outputs=[input_text, enc_display, cxs_display, cons_display])
    parser_button.click(fn=parse_text, inputs=[input_text, language_radio, version_radio], outputs=[enc_display, cxs_display, cons_display])
    input_text.submit(fn=parse_text, inputs=[input_text, language_radio, version_radio], outputs=[enc_display, cxs_display, cons_display])
    cxs_display.change(refresh_examplar, inputs=[cxs_display, language_radio, version_radio], outputs=cons_display)


demo.launch()