import warnings warnings.filterwarnings("ignore", category=UserWarning) import json import random import tempfile from pathlib import Path import numpy as np import pandas as pd import gradio as gr from cxglearner.parser import Parser from cxglearner.config import DefaultConfigs, Config from cxglearner.utils import init_logger from cxglearner.utils.utils_cxs import convert_slots_to_str MAX_EXAMPLAR = 8 examples = [ ["She should be more polite with the customers."], ["The advantage of a bad memory is that one enjoys several times the same good things for the first time."], ] cache_dir = Path(tempfile.gettempdir()) / "cxg" cache_dir.mkdir(exist_ok=True) config = Config(DefaultConfigs.eng) config.experiment.log_path = cache_dir / "cxg.log" logger = init_logger(config) parser_1_0 = Parser(config=config, version="1.0", logger=logger, cache_dir=cache_dir) parser_1_1 = Parser(config=config, version="1.1", logger=logger, cache_dir=cache_dir) examplars_1_0 = json.load(open("data/eng/1.0/learner_examplar_1.0.json", "r", encoding="utf-8")) examplars_1_1 = json.load(open("data/eng/1.1/learner_examplar_1.1.json", "r", encoding="utf-8")) metadata = { "English": { "1.0": [parser_1_0, examplars_1_0], "1.1": [parser_1_1, examplars_1_1], }, "Chinese": {}, } def fill_input_box(example): return example[0] def clear_text(): return "", pd.DataFrame(), gr.Radio(label="Constructions", choices=[]), pd.DataFrame() def parse_text(text, language, version): if not text: return pd.DataFrame(), gr.Radio(label="Constructions", choices=[]), pd.DataFrame() print(language, version, text) parser = metadata[language][version][0] encoded_elements = parser.encoder.encode(text, raw=True) tokens, upos, xpos = np.array(encoded_elements["lexical"]), np.array(encoded_elements["upos"]["spaCy"]), np.array(encoded_elements["xpos"]["spaCy"]) encoded_elements = np.vstack((tokens, upos, xpos)) radio_parsed = parser.parse(text) radio_parsed = ["{} | {} | {}-{}".format(cxs[0],convert_slots_to_str(parser.cxs_decoder[cxs[0]], parser.encoder, logger), cxs[1] + 1, cxs[2]) for cxs in radio_parsed[0]] if len(radio_parsed) == 0: radio_display = gr.Radio(label="Constructions", choices=[]) else: radio_display = gr.Radio(label="Constructions", choices=radio_parsed, interactive=True, value=radio_parsed[0]) if len(radio_parsed) == 0: cons_display = pd.DataFrame() else: cxs = radio_parsed[0] index, cxs, ranges = cxs.split("|") cxs = cxs.strip() examplars = metadata[language][version][1] columns_name = cxs if version == "1.0": cxs = cxs.replace('Ġ', '') if cxs in examplars: exams = random.choices(examplars[cxs], k=min(MAX_EXAMPLAR, len(examplars[cxs]))) cons_display = pd.DataFrame(exams, columns=[columns_name]) else: cons_display = pd.DataFrame() return encoded_elements, radio_display, cons_display def refresh_examplar(option, language, version): print(language, version, option) index, cxs, ranges = option.split("|") index = eval(index) cxs = cxs.strip() examplars = metadata[language][version][1] columns_name = cxs if version == "1.0": cxs = cxs.replace('Ġ', '') if cxs in examplars: exams = random.choices(examplars[cxs], k=min(MAX_EXAMPLAR, len(examplars[cxs]))) return pd.DataFrame(exams, columns=[columns_name]) return pd.DataFrame() with gr.Blocks() as demo: with gr.Column(): gr.Markdown("## CxGLearner Parser") with gr.Row(): input_text = gr.Textbox(label="Input Text", placeholder="Enter a sentence here...") with gr.Row(): dataset = gr.Dataset(components=[input_text], samples=examples, label="Make a Choice") with gr.Row(): language_radio = gr.Radio(["English", "Chinese"], value="English", interactive=False, label="Which language would you like to parse?") version_radio = gr.Radio(["1.1", "1.0"], value="1.1", interactive=True, label="Which version would you like to use?") with gr.Row(): clear_buttton = gr.Button("Clear") parser_button = gr.Button("Parse") with gr.Column(): gr.Markdown("### Results of Encoding and Parsing") enc_display = gr.Dataframe() cxs_display = gr.Radio(label="Constructions", choices=[]) with gr.Column(): gr.Markdown("### Examplars") cons_display = gr.Dataframe() dataset.click(fn=fill_input_box, inputs=dataset, outputs=input_text) clear_buttton.click(fn=clear_text, inputs=[], outputs=[input_text, enc_display, cxs_display, cons_display]) parser_button.click(fn=parse_text, inputs=[input_text, language_radio, version_radio], outputs=[enc_display, cxs_display, cons_display]) input_text.submit(fn=parse_text, inputs=[input_text, language_radio, version_radio], outputs=[enc_display, cxs_display, cons_display]) cxs_display.change(refresh_examplar, inputs=[cxs_display, language_radio, version_radio], outputs=cons_display) demo.launch()