Cyanido commited on
Commit
a9fa453
·
verified ·
1 Parent(s): b05bd3a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -4
app.py CHANGED
@@ -1,6 +1,6 @@
1
  # Initialize a retriever using Qdrant and SentenceTransformer embeddings
2
  from langchain_community.vectorstores import Qdrant
3
- from langchain_community.retrievers import EnsembleRetriever
4
  from langchain_community.embeddings import SentenceTransformerEmbeddings
5
  from qdrant_client import QdrantClient
6
  import pandas as pd
@@ -13,8 +13,6 @@ def get_results(search_results):
13
  filtered_img_ids = [doc.metadata.get("image_id") for doc in search_results]
14
  return filtered_img_ids
15
 
16
- vector_db_key = user_secrets.get_secret("vector_db_key")
17
-
18
  client = QdrantClient(
19
  url="https://763bc1da-0673-4535-91ac-b5538ec0287f.us-east4-0.gcp.cloud.qdrant.io:6333",
20
  api_key='UOqiBgqhhu8BBWP98mwjGl7h4IhL2vMAqzO4EI9PEB66A50n9GoIiQ',
@@ -28,7 +26,7 @@ images_data = pd.read_csv("/kaggle/input/fashion-product-images-dataset/fashion-
28
 
29
  def get_link(query):
30
  Search_Query = query
31
- neutral_retiever = EnsembleRetriever(retrievers=[dense_vector_retriever.as_retriever()])
32
  result = neutral_retiever.get_relevant_documents(Search_Query)
33
  filtered_images = get_results(result)
34
  filtered_img_ids = [doc.metadata.get("image_id") for doc in result]
 
1
  # Initialize a retriever using Qdrant and SentenceTransformer embeddings
2
  from langchain_community.vectorstores import Qdrant
3
+ from langchain_community.retrievers.qdrant_sparse_vector_retriever import QdrantSparseVectorRetriever
4
  from langchain_community.embeddings import SentenceTransformerEmbeddings
5
  from qdrant_client import QdrantClient
6
  import pandas as pd
 
13
  filtered_img_ids = [doc.metadata.get("image_id") for doc in search_results]
14
  return filtered_img_ids
15
 
 
 
16
  client = QdrantClient(
17
  url="https://763bc1da-0673-4535-91ac-b5538ec0287f.us-east4-0.gcp.cloud.qdrant.io:6333",
18
  api_key='UOqiBgqhhu8BBWP98mwjGl7h4IhL2vMAqzO4EI9PEB66A50n9GoIiQ',
 
26
 
27
  def get_link(query):
28
  Search_Query = query
29
+ neutral_retiever = QdrantSparseVectorRetriever(retrievers=[dense_vector_retriever.as_retriever()])
30
  result = neutral_retiever.get_relevant_documents(Search_Query)
31
  filtered_images = get_results(result)
32
  filtered_img_ids = [doc.metadata.get("image_id") for doc in result]