Spaces:
Running
Running
import gradio as gr | |
import onnxruntime as ort | |
import numpy as np | |
from PIL import Image | |
import json | |
from huggingface_hub import hf_hub_download | |
# --- Constants --- | |
MODEL_REPO = "AngelBottomless/camie-tagger-onnxruntime" | |
MODEL_FILE = "camie_tagger_initial.onnx" | |
META_FILE = "metadata.json" | |
IMAGE_SIZE = (512, 512) | |
DEFAULT_THRESHOLD = 0.35 | |
# --- Helper Functions --- | |
def download_model_and_metadata(repo_id: str, model_filename: str, meta_filename: str, cache_dir: str = "."): | |
"""Downloads the ONNX model and metadata from Hugging Face Hub.""" | |
model_path = hf_hub_download(repo_id=repo_id, filename=model_filename, cache_dir=cache_dir) | |
meta_path = hf_hub_download(repo_id=repo_id, filename=meta_filename, cache_dir=cache_dir) | |
return model_path, meta_path | |
def load_model_session(model_path: str) -> ort.InferenceSession: | |
"""Loads the ONNX model inference session.""" | |
return ort.InferenceSession(model_path, providers=["CPUExecutionProvider"]) | |
def load_metadata(meta_path: str) -> dict: | |
"""Loads the metadata from the JSON file.""" | |
with open(meta_path, "r", encoding="utf-8") as f: | |
return json.load(f) | |
def preprocess_image(pil_image: Image.Image, image_size: tuple = IMAGE_SIZE) -> np.ndarray: | |
"""Preprocesses the PIL image to numpy array for model input.""" | |
img = pil_image.convert("RGB").resize(image_size) | |
arr = np.array(img).astype(np.float32) / 255.0 | |
arr = np.transpose(arr, (2, 0, 1)) | |
arr = np.expand_dims(arr, 0) | |
return arr | |
def apply_sigmoid(logits: np.ndarray) -> np.ndarray: | |
"""Applies sigmoid function to logits to get probabilities.""" | |
return 1 / (1 + np.exp(-logits)) | |
def extract_tags_from_probabilities(probs: np.ndarray, metadata: dict, threshold: float = DEFAULT_THRESHOLD) -> dict: | |
"""Extracts tags and probabilities from the model output probabilities.""" | |
idx_to_tag = metadata["idx_to_tag"] | |
tag_to_category = metadata.get("tag_to_category", {}) | |
category_thresholds = metadata.get("category_thresholds", {}) | |
results_by_cat = {} | |
all_artist_tags_probs = [] | |
for idx, prob in enumerate(probs): | |
tag = idx_to_tag[str(idx)] | |
cat = tag_to_category.get(tag, "unknown") | |
if cat == 'artist': | |
all_artist_tags_probs.append((tag, float(prob))) | |
thresh = category_thresholds.get(cat, threshold) | |
if float(prob) >= thresh: | |
results_by_cat.setdefault(cat, []).append((tag, float(prob))) | |
return results_by_cat, all_artist_tags_probs | |
def format_prompt_style_output(results_by_cat: dict, all_artist_tags_probs: list) -> str: | |
"""Formats the output as a comma-separated prompt-style string.""" | |
artist_tags_with_probs = results_by_cat.get('artist', []) | |
character_tags_with_probs = results_by_cat.get('character', []) | |
general_tags_with_probs = results_by_cat.get('general', []) | |
artist_tags_with_probs.sort(key=lambda x: x[1], reverse=True) | |
character_tags_with_probs.sort(key=lambda x: x[1], reverse=True) | |
general_tags_with_probs.sort(key=lambda x: x[1], reverse=True) | |
artist_prompt_tags = [tag.replace("_", " ").replace("(", r"\\(").replace(")", r"\\)") for tag, prob in artist_tags_with_probs] | |
character_prompt_tags = [tag.replace("_", " ").replace("(", r"\\(").replace(")", r"\\)") for tag, prob in character_tags_with_probs] | |
general_prompt_tags = [tag.replace("_", " ").replace("(", r"\\(").replace(")", r"\\)") for tag, prob in general_tags_with_probs] | |
prompt_tags = artist_prompt_tags + character_prompt_tags + general_prompt_tags | |
if not artist_prompt_tags and all_artist_tags_probs: | |
best_artist_tag, best_artist_prob = max(all_artist_tags_probs, key=lambda item: item[1]) if all_artist_tags_probs else (None, None) | |
if best_artist_tag: # Check if best_artist_tag is not None | |
prompt_tags = [best_artist_tag.replace("_", " ").replace("(", r"\\(").replace(")", r"\\)")] + prompt_tags | |
if not prompt_tags: | |
return "No tags predicted." | |
return ", ".join(prompt_tags) | |
def format_detailed_output(results_by_cat: dict, all_artist_tags_probs: list) -> str: | |
"""Formats the output as a detailed markdown string with categories and probabilities.""" | |
if not results_by_cat: | |
return "No tags predicted for this image." | |
if 'artist' not in results_by_cat and all_artist_tags_probs: | |
best_artist_tag, best_artist_prob = max(all_artist_tags_probs, key=lambda item: item[1]) if all_artist_tags_probs else (None, None) | |
if best_artist_tag: # Check if best_artist_tag is not None | |
results_by_cat['artist'] = [(best_artist_tag, best_artist_prob)] | |
lines = [] | |
lines.append("**Predicted Tags by Category:** \n") | |
for cat, tag_list in results_by_cat.items(): | |
tag_list.sort(key=lambda x: x[1], reverse=True) | |
lines.append(f"**Category: {cat}** – {len(tag_list)} tags") | |
for tag, prob in tag_list: | |
tag_pretty = tag.replace("_", " ").replace("(", r"\\(").replace(")", r"\\)") | |
lines.append(f"- {tag_pretty} (Prob: {prob:.3f})") | |
lines.append("") | |
return "\n".join(lines) | |
# --- Inference Function --- | |
def tag_image(pil_image: Image.Image, output_format: str, session: ort.InferenceSession, metadata: dict) -> str: | |
"""Tags the image and formats the output based on the selected format.""" | |
if pil_image is None: | |
return "Please upload an image." | |
input_tensor = preprocess_image(pil_image) | |
input_name = session.get_inputs()[0].name | |
initial_logits, refined_logits = session.run(None, {input_name: input_tensor}) | |
probs = apply_sigmoid(refined_logits)[0] # Apply sigmoid and get probabilities for the first (and only) image in batch | |
results_by_cat, all_artist_tags_probs = extract_tags_from_probabilities(probs, metadata) | |
if output_format == "Prompt-style Tags": | |
return format_prompt_style_output(results_by_cat, all_artist_tags_probs) | |
else: # Detailed Output | |
return format_detailed_output(results_by_cat, all_artist_tags_probs) | |
# --- Gradio UI --- | |
def create_gradio_interface(session: ort.InferenceSession, metadata: dict) -> gr.Blocks: | |
"""Creates the Gradio Blocks interface.""" | |
demo = gr.Blocks(theme="gradio/soft") | |
with demo: | |
gr.Markdown("# 🏷️ Camie Tagger – Anime Image Tagging\nThis demo uses an ONNX model of Camie Tagger to label anime illustrations with tags. Upload an image and click **Tag Image** to see predictions.") | |
gr.Markdown("*(Note: The model will predict a large number of tags across categories like character, general, artist, etc. You can choose a concise prompt-style output or a detailed category-wise breakdown.)*") | |
with gr.Row(): | |
with gr.Column(): | |
image_in = gr.Image(type="pil", label="Input Image") | |
format_choice = gr.Radio(choices=["Prompt-style Tags", "Detailed Output"], value="Prompt-style Tags", label="Output Format") | |
tag_button = gr.Button("🔍 Tag Image") | |
with gr.Column(): | |
output_box = gr.Markdown("") | |
tag_button.click( | |
fn=tag_image, | |
inputs=[image_in, format_choice], | |
outputs=output_box, | |
extra_args=[session, metadata] # Pass session and metadata as extra arguments | |
) | |
gr.Markdown("----\n**Model:** [Camie Tagger ONNX](https://huggingface.co/AngelBottomless/camie-tagger-onnxruntime) • **Base Model:** Camais03/camie-tagger (61% F1 on 70k tags) • **ONNX Runtime:** for efficient CPU inference • *Demo built with Gradio Blocks.*") | |
return demo | |
# --- Main Script --- | |
if __name__ == "__main__": | |
model_path, meta_path = download_model_and_metadata(MODEL_REPO, MODEL_FILE, META_FILE) | |
session = load_model_session(model_path) | |
metadata = load_metadata(meta_path) | |
demo = create_gradio_interface(session, metadata) | |
demo.launch() |