File size: 3,976 Bytes
9340dd5
9a84d4a
9340dd5
 
c1c1cb3
9340dd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a84d4a
 
 
 
9340dd5
 
04ed659
9340dd5
9a84d4a
 
9340dd5
 
9a84d4a
9340dd5
 
9a84d4a
 
9340dd5
 
9a84d4a
9340dd5
9a84d4a
9340dd5
 
 
c1c1cb3
9340dd5
9a84d4a
c1c1cb3
 
 
 
9a84d4a
c1c1cb3
04ed659
 
 
 
 
9a84d4a
 
c1c1cb3
13a5da0
c1c1cb3
9340dd5
c1c1cb3
9340dd5
c1c1cb3
 
 
 
 
 
 
 
9a84d4a
c1c1cb3
 
 
9a84d4a
9340dd5
9a84d4a
9340dd5
 
9a84d4a
 
 
 
9340dd5
 
9a84d4a
 
 
 
9340dd5
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from transformers import LlamaForCausalLM, LlamaTokenizer, Trainer, TrainingArguments
from transformers import BitsAndBytesConfig
import datasets
import torch
from torch.nn.utils.rnn import pad_sequence
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from accelerate import Accelerator

# Version and CUDA check
print(f"PyTorch version: {torch.__version__}")
print(f"CUDA version: {torch.version.cuda}")
print(f"Is CUDA available: {torch.cuda.is_available()}")
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")

# Load Llama model and tokenizer
MODEL_ID = "meta-llama/Llama-2-7b-hf"
tokenizer = LlamaTokenizer.from_pretrained(MODEL_ID)

if tokenizer.pad_token is None:
    tokenizer.add_special_tokens({'pad_token': '[PAD]'})

# Quantization config
quantization_config = BitsAndBytesConfig(load_in_8bit=True)

# Load model with FlashAttention 2
model = LlamaForCausalLM.from_pretrained(
    MODEL_ID,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    quantization_config=quantization_config,
    attn_implementation="flash_attention_2"
)

# Prepare for LoRA
model = prepare_model_for_kbit_training(model)
peft_config = LoraConfig(
    r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM",
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj"]
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()

# Load dataset
dataset = datasets.load_dataset("json", data_files="final_combined_fraud_data.json", field="training_pairs")
print("First example from dataset:", dataset["train"][0])

# Tokenization with lists (no tensors)
def tokenize_data(example):
    formatted_text = f"{example['input']} {example['output']}"
    inputs = tokenizer(formatted_text, truncation=True, max_length=2048)
    input_ids = inputs["input_ids"]
    attention_mask = inputs["attention_mask"]
    labels = input_ids.copy()
    input_len = len(tokenizer(example['input'])["input_ids"])
    labels[:input_len] = [-100] * input_len
    return {
        "input_ids": input_ids,
        "labels": labels,
        "attention_mask": attention_mask
    }

tokenized_dataset = dataset["train"].map(tokenize_data, batched=False, remove_columns=dataset["train"].column_names)
# Print first example (lists with lengths)
first_example = tokenized_dataset[0]
print("First tokenized example:", {k: (type(v), len(v)) for k, v in first_example.items()})

# Data collator: convert lists to tensors and pad
def custom_data_collator(features):
    input_ids = [torch.tensor(f["input_ids"]) for f in features]
    attention_mask = [torch.tensor(f["attention_mask"]) for f in features]
    labels = [torch.tensor(f["labels"]) for f in features]
    
    input_ids = pad_sequence(input_ids, batch_first=True, padding_value=tokenizer.pad_token_id)
    attention_mask = pad_sequence(attention_mask, batch_first=True, padding_value=0)
    labels = pad_sequence(labels, batch_first=True, padding_value=-100)
    
    return {
        "input_ids": input_ids,
        "attention_mask": attention_mask,
        "labels": labels
    }

# Accelerator and training
accelerator = Accelerator()
training_args = TrainingArguments(
    output_dir="./fine_tuned_llama2", per_device_train_batch_size=4, gradient_accumulation_steps=4,
    eval_strategy="steps", eval_steps=50, save_strategy="steps", save_steps=100, save_total_limit=3,
    num_train_epochs=3, learning_rate=2e-5, weight_decay=0.01, logging_dir="./logs", logging_steps=10,
    bf16=True, gradient_checkpointing=True, optim="adamw_torch", warmup_steps=100
)
trainer = Trainer(
    model=model, args=training_args,
    train_dataset=tokenized_dataset.select(range(90)),
    eval_dataset=tokenized_dataset.select(range(90, 112)),
    data_collator=custom_data_collator
)
trainer.train()
model.save_pretrained("./fine_tuned_llama2")
tokenizer.save_pretrained("./fine_tuned_llama2")
print("Training complete. Model and tokenizer saved to ./fine_tuned_llama2")