|
|
|
|
|
|
|
try: |
|
import gradio as gr |
|
from transformers import LlamaForCausalLM, LlamaTokenizer, Trainer, TrainingArguments |
|
import datasets |
|
import torch |
|
import json |
|
import os |
|
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training |
|
from accelerate import Accelerator |
|
import bitsandbytes |
|
import sentencepiece |
|
except ImportError as e: |
|
missing_package = str(e).split("'")[-2] |
|
if "accelerate" in missing_package: |
|
os.system(f'pip install "accelerate>=0.26.0"') |
|
elif "sentencepiece" in missing_package: |
|
os.system(f'pip install "sentencepiece"') |
|
else: |
|
os.system(f'pip install "{missing_package}"') |
|
|
|
import gradio as gr |
|
from transformers import LlamaForCausalLM, LlamaTokenizer, Trainer, TrainingArguments |
|
import datasets |
|
import torch |
|
import json |
|
import os |
|
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training |
|
from accelerate import Accelerator |
|
import bitsandbytes |
|
import sentencepiece |
|
|
|
|
|
MODEL_ID = "meta-llama/Llama-2-7b-hf" |
|
tokenizer = LlamaTokenizer.from_pretrained(MODEL_ID) |
|
|
|
|
|
if tokenizer.pad_token is None: |
|
tokenizer.add_special_tokens({'pad_token': '[PAD]'}) |
|
|
|
|
|
use_flash_attention = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 |
|
|
|
|
|
model = LlamaForCausalLM.from_pretrained( |
|
MODEL_ID, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
use_flash_attention_2=use_flash_attention, |
|
load_in_8bit=True |
|
) |
|
|
|
|
|
model = prepare_model_for_kbit_training(model) |
|
|
|
|
|
peft_config = LoraConfig( |
|
r=16, |
|
lora_alpha=32, |
|
lora_dropout=0.05, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"] |
|
) |
|
|
|
model = get_peft_model(model, peft_config) |
|
model.print_trainable_parameters() |
|
|
|
|
|
def train_ui_tars(file): |
|
try: |
|
|
|
with open(file.name, "r", encoding="utf-8") as f: |
|
raw_data = json.load(f) |
|
|
|
|
|
training_data = raw_data.get("training_pairs", raw_data) |
|
|
|
|
|
fixed_json_path = "fixed_fraud_data.json" |
|
with open(fixed_json_path, "w", encoding="utf-8") as f: |
|
json.dump(training_data, f, indent=4) |
|
|
|
|
|
dataset = datasets.load_dataset("json", data_files=fixed_json_path) |
|
|
|
|
|
def tokenize_data(example): |
|
|
|
formatted_text = f"<s>[INST] {example['input']} [/INST] {example['output']}</s>" |
|
inputs = tokenizer( |
|
formatted_text, |
|
padding="max_length", |
|
truncation=True, |
|
max_length=2048, |
|
return_tensors="pt" |
|
) |
|
inputs["labels"] = inputs["input_ids"].clone() |
|
return {k: v.squeeze(0) for k, v in inputs.items()} |
|
|
|
tokenized_dataset = dataset["train"].map(tokenize_data, batched=True, remove_columns=dataset["train"].column_names) |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="./fine_tuned_llama", |
|
per_device_train_batch_size=4, |
|
gradient_accumulation_steps=8, |
|
evaluation_strategy="no", |
|
save_strategy="epoch", |
|
save_total_limit=2, |
|
num_train_epochs=3, |
|
learning_rate=2e-5, |
|
weight_decay=0.01, |
|
logging_dir="./logs", |
|
logging_steps=10, |
|
bf16=True, |
|
gradient_checkpointing=True, |
|
optim="adamw_torch", |
|
warmup_steps=100, |
|
) |
|
|
|
|
|
def custom_data_collator(features): |
|
batch = { |
|
"input_ids": torch.stack([f["input_ids"] for f in features]), |
|
"attention_mask": torch.stack([f["attention_mask"] for f in features]), |
|
"labels": torch.stack([f["labels"] for f in features]), |
|
} |
|
return batch |
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=tokenized_dataset, |
|
data_collator=custom_data_collator, |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
model.save_pretrained("./fine_tuned_llama") |
|
tokenizer.save_pretrained("./fine_tuned_llama") |
|
|
|
return "Training completed successfully! Model saved to ./fine_tuned_llama" |
|
|
|
except Exception as e: |
|
return f"Error: {str(e)}" |
|
|
|
|
|
with gr.Blocks(title="Model Fine-Tuning Interface") as demo: |
|
gr.Markdown("# Llama Fraud Detection Fine-Tuning UI") |
|
gr.Markdown("Upload a JSON file with 'input' and 'output' pairs to fine-tune the Llama model on your fraud dataset.") |
|
|
|
file_input = gr.File(label="Upload Fraud Dataset (JSON)") |
|
train_button = gr.Button("Start Fine-Tuning") |
|
output = gr.Textbox(label="Training Status") |
|
|
|
train_button.click(fn=train_ui_tars, inputs=file_input, outputs=output) |
|
|
|
demo.launch() |