|
from transformers import LlamaForCausalLM, LlamaTokenizer, Trainer, TrainingArguments |
|
import datasets |
|
import torch |
|
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training |
|
from accelerate import Accelerator |
|
|
|
|
|
print(f"PyTorch version: {torch.__version__}") |
|
print(f"CUDA version: {torch.version.cuda}") |
|
print(f"Is CUDA available: {torch.cuda.is_available()}") |
|
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") |
|
|
|
|
|
MODEL_ID = "meta-llama/Llama-2-7b-hf" |
|
tokenizer = LlamaTokenizer.from_pretrained(MODEL_ID) |
|
|
|
|
|
if tokenizer.pad_token is None: |
|
tokenizer.add_special_tokens({'pad_token': '[PAD]'}) |
|
|
|
|
|
model = LlamaForCausalLM.from_pretrained( |
|
MODEL_ID, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
use_flash_attention_2=True, |
|
load_in_8bit=True |
|
) |
|
|
|
|
|
model = prepare_model_for_kbit_training(model) |
|
|
|
|
|
peft_config = LoraConfig( |
|
r=16, |
|
lora_alpha=32, |
|
lora_dropout=0.05, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"] |
|
) |
|
|
|
model = get_peft_model(model, peft_config) |
|
model.print_trainable_parameters() |
|
|
|
|
|
dataset = datasets.load_dataset("json", data_files="final_combined_fraud_data.json", field="training_pairs") |
|
|
|
|
|
print("First example from dataset:", dataset["train"][0]) |
|
|
|
|
|
def format_instruction(example): |
|
|
|
return f"""<s>[INST] {example['input']} [/INST] {example['output']}</s>""" |
|
|
|
|
|
def tokenize_data(example): |
|
formatted_text = format_instruction(example) |
|
|
|
|
|
inputs = tokenizer( |
|
formatted_text, |
|
padding="max_length", |
|
truncation=True, |
|
max_length=2048, |
|
return_tensors="pt" |
|
) |
|
|
|
|
|
inputs["labels"] = inputs["input_ids"].clone() |
|
|
|
|
|
inputs = {k: v.squeeze(0) for k, v in inputs.items()} |
|
return inputs |
|
|
|
|
|
tokenized_dataset = dataset["train"].map( |
|
tokenize_data, |
|
batched=False, |
|
remove_columns=dataset["train"].column_names |
|
) |
|
|
|
|
|
print("First tokenized example:", {k: (type(v), v.shape if isinstance(v, torch.Tensor) else "list") for k, v in tokenized_dataset[0].items()}) |
|
|
|
|
|
def custom_data_collator(features): |
|
batch = {} |
|
|
|
|
|
batch["input_ids"] = torch.stack([f["input_ids"] for f in features]) |
|
batch["attention_mask"] = torch.stack([f["attention_mask"] for f in features]) |
|
batch["labels"] = torch.stack([f["labels"] for f in features]) |
|
|
|
return batch |
|
|
|
|
|
accelerator = Accelerator() |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="./fine_tuned_llama2", |
|
per_device_train_batch_size=4, |
|
gradient_accumulation_steps=8, |
|
eval_strategy="no", |
|
save_strategy="steps", |
|
save_steps=100, |
|
save_total_limit=3, |
|
num_train_epochs=3, |
|
learning_rate=2e-5, |
|
weight_decay=0.01, |
|
logging_dir="./logs", |
|
logging_steps=10, |
|
bf16=True, |
|
gradient_checkpointing=True, |
|
optim="adamw_torch", |
|
warmup_steps=100, |
|
) |
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=tokenized_dataset, |
|
data_collator=custom_data_collator, |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
model.save_pretrained("./fine_tuned_llama2") |
|
tokenizer.save_pretrained("./fine_tuned_llama2") |
|
|
|
print("Training complete. Model and tokenizer saved to ./fine_tuned_llama2") |