Cylanoid's picture
fix
68401c7
from transformers import LlamaForCausalLM, LlamaTokenizer, Trainer, TrainingArguments
from transformers import BitsAndBytesConfig
import datasets
import torch
from torch.nn.utils.rnn import pad_sequence
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from accelerate import Accelerator
# Version and CUDA check
print(f"PyTorch version: {torch.__version__}")
print(f"CUDA version: {torch.version.cuda}")
print(f"Is CUDA available: {torch.cuda.is_available()}")
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
# Load Llama model and tokenizer
MODEL_ID = "meta-llama/Llama-2-7b-hf"
tokenizer = LlamaTokenizer.from_pretrained(MODEL_ID)
# Set pad token to existing <|endoftext|> (ID 2) instead of adding a new one
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token # Use <|endoftext|> as pad token
tokenizer.pad_token_id = tokenizer.eos_token_id # Should be 2
# Quantization config
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
# Load model without FlashAttention
model = LlamaForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
# Prepare for LoRA
model = prepare_model_for_kbit_training(model)
peft_config = LoraConfig(
r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM",
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"]
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
# Load dataset
dataset = datasets.load_dataset("json", data_files="final_combined_fraud_data.json", field="training_pairs")
print("First example from dataset:", dataset["train"][0])
# Tokenization with validation
def tokenize_data(example):
formatted_text = f"{example['input']} {example['output']}"
inputs = tokenizer(formatted_text, truncation=True, max_length=512, padding="max_length", return_tensors="pt")
input_ids = inputs["input_ids"].squeeze(0)
attention_mask = inputs["attention_mask"].squeeze(0)
labels = input_ids.clone()
input_len = len(tokenizer(example['input'])["input_ids"])
labels[:input_len] = -100 # Mask input part in labels only
# Validate input_ids
vocab_size = model.config.vocab_size # Should be 32000 for LLaMA-2
if (input_ids < 0).any() or (input_ids >= vocab_size).any():
print(f"Invalid input_ids: min={input_ids.min()}, max={input_ids.max()}, vocab_size={vocab_size}")
raise ValueError("input_ids contains invalid indices")
print(f"Debug: input_ids[:5] = {input_ids[:5].tolist()}, labels[:5] = {labels[:5].tolist()}, attention_mask[:5] = {attention_mask[:5].tolist()}")
return {
"input_ids": input_ids.tolist(),
"labels": labels.tolist(),
"attention_mask": attention_mask.tolist()
}
tokenized_dataset = dataset["train"].map(tokenize_data, batched=False, remove_columns=dataset["train"].column_names)
first_example = tokenized_dataset[0]
print("First tokenized example:", {k: (type(v), len(v)) for k, v in first_example.items()})
# Data collator with tensor stacking
def custom_data_collator(features):
input_ids = [torch.tensor(f["input_ids"]) for f in features]
attention_mask = [torch.tensor(f["attention_mask"]) for f in features]
labels = [torch.tensor(f["labels"]) for f in features]
return {
"input_ids": torch.stack(input_ids),
"attention_mask": torch.stack(attention_mask),
"labels": torch.stack(labels)
}
# Accelerator and training
accelerator = Accelerator()
training_args = TrainingArguments(
output_dir="./fine_tuned_llama2", per_device_train_batch_size=4, gradient_accumulation_steps=4,
eval_strategy="steps", eval_steps=50, save_strategy="steps", save_steps=100, save_total_limit=3,
num_train_epochs=3, learning_rate=2e-5, weight_decay=0.01, logging_dir="./logs", logging_steps=10,
bf16=True, gradient_checkpointing=True, optim="adamw_torch", warmup_steps=100
)
trainer = Trainer(
model=model, args=training_args,
train_dataset=tokenized_dataset.select(range(90)),
eval_dataset=tokenized_dataset.select(range(90, 112)),
data_collator=custom_data_collator
)
trainer.train()
model.save_pretrained("./fine_tuned_llama2")
tokenizer.save_pretrained("./fine_tuned_llama2")
print("Training complete. Model and tokenizer saved to ./fine_tuned_llama2")