|
from transformers import LlamaForCausalLM, LlamaTokenizer, Trainer, TrainingArguments |
|
from transformers import BitsAndBytesConfig |
|
import datasets |
|
import torch |
|
from torch.nn.utils.rnn import pad_sequence |
|
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training |
|
from accelerate import Accelerator |
|
|
|
|
|
print(f"PyTorch version: {torch.__version__}") |
|
print(f"CUDA version: {torch.version.cuda}") |
|
print(f"Is CUDA available: {torch.cuda.is_available()}") |
|
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") |
|
|
|
|
|
MODEL_ID = "meta-llama/Llama-2-7b-hf" |
|
tokenizer = LlamaTokenizer.from_pretrained(MODEL_ID) |
|
|
|
|
|
if tokenizer.pad_token is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
|
|
|
|
quantization_config = BitsAndBytesConfig(load_in_8bit=True) |
|
|
|
|
|
model = LlamaForCausalLM.from_pretrained( |
|
MODEL_ID, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
quantization_config=quantization_config |
|
) |
|
|
|
|
|
model = prepare_model_for_kbit_training(model) |
|
peft_config = LoraConfig( |
|
r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", |
|
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"] |
|
) |
|
model = get_peft_model(model, peft_config) |
|
model.print_trainable_parameters() |
|
|
|
|
|
dataset = datasets.load_dataset("json", data_files="final_combined_fraud_data.json", field="training_pairs") |
|
print("First example from dataset:", dataset["train"][0]) |
|
|
|
|
|
def tokenize_data(example): |
|
formatted_text = f"{example['input']} {example['output']}" |
|
inputs = tokenizer(formatted_text, truncation=True, max_length=512, padding="max_length", return_tensors="pt") |
|
input_ids = inputs["input_ids"].squeeze(0) |
|
attention_mask = inputs["attention_mask"].squeeze(0) |
|
labels = input_ids.clone() |
|
input_len = len(tokenizer(example['input'])["input_ids"]) |
|
labels[:input_len] = -100 |
|
|
|
vocab_size = model.config.vocab_size |
|
if (input_ids < 0).any() or (input_ids >= vocab_size).any(): |
|
print(f"Invalid input_ids: min={input_ids.min()}, max={input_ids.max()}, vocab_size={vocab_size}") |
|
raise ValueError("input_ids contains invalid indices") |
|
print(f"Debug: input_ids[:5] = {input_ids[:5].tolist()}, labels[:5] = {labels[:5].tolist()}, attention_mask[:5] = {attention_mask[:5].tolist()}") |
|
return { |
|
"input_ids": input_ids.tolist(), |
|
"labels": labels.tolist(), |
|
"attention_mask": attention_mask.tolist() |
|
} |
|
|
|
tokenized_dataset = dataset["train"].map(tokenize_data, batched=False, remove_columns=dataset["train"].column_names) |
|
first_example = tokenized_dataset[0] |
|
print("First tokenized example:", {k: (type(v), len(v)) for k, v in first_example.items()}) |
|
|
|
|
|
def custom_data_collator(features): |
|
input_ids = [torch.tensor(f["input_ids"]) for f in features] |
|
attention_mask = [torch.tensor(f["attention_mask"]) for f in features] |
|
labels = [torch.tensor(f["labels"]) for f in features] |
|
return { |
|
"input_ids": torch.stack(input_ids), |
|
"attention_mask": torch.stack(attention_mask), |
|
"labels": torch.stack(labels) |
|
} |
|
|
|
|
|
accelerator = Accelerator() |
|
training_args = TrainingArguments( |
|
output_dir="./fine_tuned_llama2", per_device_train_batch_size=4, gradient_accumulation_steps=4, |
|
eval_strategy="steps", eval_steps=50, save_strategy="steps", save_steps=100, save_total_limit=3, |
|
num_train_epochs=3, learning_rate=2e-5, weight_decay=0.01, logging_dir="./logs", logging_steps=10, |
|
bf16=True, gradient_checkpointing=True, optim="adamw_torch", warmup_steps=100 |
|
) |
|
trainer = Trainer( |
|
model=model, args=training_args, |
|
train_dataset=tokenized_dataset.select(range(90)), |
|
eval_dataset=tokenized_dataset.select(range(90, 112)), |
|
data_collator=custom_data_collator |
|
) |
|
trainer.train() |
|
model.save_pretrained("./fine_tuned_llama2") |
|
tokenizer.save_pretrained("./fine_tuned_llama2") |
|
print("Training complete. Model and tokenizer saved to ./fine_tuned_llama2") |