Update app.py
Browse files
app.py
CHANGED
@@ -1,163 +1,44 @@
|
|
1 |
-
# app.py
|
2 |
-
|
3 |
import gradio as gr
|
4 |
-
from transformers import
|
5 |
-
import datasets
|
6 |
import torch
|
7 |
-
import json
|
8 |
-
import os
|
9 |
-
import pdfplumber
|
10 |
-
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
|
11 |
-
from accelerate import Accelerator
|
12 |
-
import bitsandbytes
|
13 |
-
import sentencepiece
|
14 |
-
import huggingface_hub
|
15 |
-
from transformers import TrainingArguments, Trainer
|
16 |
-
|
17 |
-
# Debug: Print all environment variables to verify 'LLama' is present
|
18 |
-
print("Environment variables:", dict(os.environ))
|
19 |
-
|
20 |
-
# Retrieve the token from Hugging Face Space secrets
|
21 |
-
# Token placement: LLama:levi put token here
|
22 |
-
LLama = os.getenv("LLama") # Retrieves the value of the 'LLama' environment variable
|
23 |
-
if not LLama:
|
24 |
-
raise ValueError("LLama token not found in environment variables. Please set it in Hugging Face Space secrets under 'Settings' > 'Secrets' as 'LLama'.")
|
25 |
-
|
26 |
-
# Debug: Print the token to verify it's being read (remove this in production)
|
27 |
-
print(f"Retrieved LLama token: {LLama[:5]}... (first 5 chars for security)")
|
28 |
-
|
29 |
-
# Authenticate with Hugging Face
|
30 |
-
huggingface_hub.login(token=LLama)
|
31 |
-
|
32 |
-
# Model setup
|
33 |
-
MODEL_ID = "meta-llama/Llama-2-7b-hf"
|
34 |
-
tokenizer = LlamaTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
35 |
-
|
36 |
-
# Load model with default attention mechanism (no Flash Attention)
|
37 |
-
model = LlamaForCausalLM.from_pretrained(
|
38 |
-
MODEL_ID,
|
39 |
-
torch_dtype=torch.bfloat16,
|
40 |
-
device_map="auto",
|
41 |
-
load_in_8bit=True
|
42 |
-
)
|
43 |
-
|
44 |
-
# Add padding token if it doesn't exist and resize embeddings
|
45 |
-
if tokenizer.pad_token is None:
|
46 |
-
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
47 |
-
model.resize_token_embeddings(len(tokenizer))
|
48 |
-
|
49 |
-
# Prepare model for LoRA training
|
50 |
-
model = prepare_model_for_kbit_training(model)
|
51 |
-
peft_config = LoraConfig(
|
52 |
-
r=16,
|
53 |
-
lora_alpha=32,
|
54 |
-
lora_dropout=0.05,
|
55 |
-
bias="none",
|
56 |
-
task_type="CAUSAL_LM",
|
57 |
-
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"]
|
58 |
-
)
|
59 |
-
model = get_peft_model(model, peft_config)
|
60 |
-
model.print_trainable_parameters()
|
61 |
|
62 |
-
#
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
try:
|
65 |
-
#
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
elif file.name.endswith(".json"):
|
74 |
-
with open(file.name, "r", encoding="utf-8") as f:
|
75 |
-
raw_data = json.load(f)
|
76 |
-
training_data = raw_data.get("training_pairs", raw_data)
|
77 |
-
with open("temp_fraud_data.json", "w", encoding="utf-8") as f:
|
78 |
-
json.dump({"training_pairs": training_data}, f)
|
79 |
-
dataset = datasets.load_dataset("json", data_files="temp_fraud_data.json")
|
80 |
-
|
81 |
-
if not raw_text and not dataset:
|
82 |
-
return "Error: No valid PDF or JSON data found."
|
83 |
-
|
84 |
-
# Create training pairs from PDFs if no JSON
|
85 |
-
if raw_text:
|
86 |
-
def create_training_pairs(text):
|
87 |
-
pairs = []
|
88 |
-
if "Haloperidol" in text and "daily" in text.lower():
|
89 |
-
pairs.append({
|
90 |
-
"input": "Patient received Haloperidol daily. Is this overmedication?",
|
91 |
-
"output": "Yes, daily Haloperidol use without documented severe psychosis or failed alternatives may indicate overmedication, violating CMS guidelines."
|
92 |
-
})
|
93 |
-
if "Lorazepam" in text and "frequent" in text.lower():
|
94 |
-
pairs.append({
|
95 |
-
"input": "Care logs show frequent Lorazepam use with a 90-day supply. Is this suspicious?",
|
96 |
-
"output": "Yes, frequent use with a large supply suggests potential overuse or mismanagement, a fraud indicator."
|
97 |
-
})
|
98 |
-
return pairs
|
99 |
-
training_data = create_training_pairs(raw_text)
|
100 |
-
with open("temp_fraud_data.json", "w") as f:
|
101 |
-
json.dump({"training_pairs": training_data}, f)
|
102 |
-
dataset = datasets.load_dataset("json", data_files="temp_fraud_data.json")
|
103 |
-
|
104 |
-
# Tokenization function
|
105 |
-
def tokenize_data(example):
|
106 |
-
formatted_text = f"<s>[INST] {example['input']} [/INST] {example['output']}</s>"
|
107 |
-
inputs = tokenizer(formatted_text, padding="max_length", truncation=True, max_length=4096, return_tensors="pt")
|
108 |
-
inputs["labels"] = inputs["input_ids"].clone()
|
109 |
-
return {k: v.squeeze(0) for k, v in inputs.items()}
|
110 |
-
|
111 |
-
tokenized_dataset = dataset["train"].map(tokenize_data, batched=True, remove_columns=dataset["train"].column_names)
|
112 |
-
|
113 |
-
# Training setup
|
114 |
-
training_args = TrainingArguments(
|
115 |
-
output_dir="./fine_tuned_llama_healthcare",
|
116 |
-
per_device_train_batch_size=4,
|
117 |
-
gradient_accumulation_steps=8,
|
118 |
-
eval_strategy="no",
|
119 |
-
save_strategy="epoch",
|
120 |
-
save_total_limit=2,
|
121 |
-
num_train_epochs=5,
|
122 |
-
learning_rate=2e-5,
|
123 |
-
weight_decay=0.01,
|
124 |
-
logging_dir="./logs",
|
125 |
-
logging_steps=10,
|
126 |
-
bf16=True,
|
127 |
-
gradient_checkpointing=True,
|
128 |
-
optim="adamw_torch",
|
129 |
-
warmup_steps=100,
|
130 |
-
)
|
131 |
-
|
132 |
-
def custom_data_collator(features):
|
133 |
-
return {
|
134 |
-
"input_ids": torch.stack([f["input_ids"] for f in features]),
|
135 |
-
"attention_mask": torch.stack([f["attention_mask"] for f in features]),
|
136 |
-
"labels": torch.stack([f["labels"] for f in features]),
|
137 |
-
}
|
138 |
-
|
139 |
-
trainer = Trainer(
|
140 |
-
model=model,
|
141 |
-
args=training_args,
|
142 |
-
train_dataset=tokenized_dataset,
|
143 |
-
data_collator=custom_data_collator,
|
144 |
-
)
|
145 |
-
trainer.train()
|
146 |
-
model.save_pretrained("./fine_tuned_llama_healthcare")
|
147 |
-
tokenizer.save_pretrained("./fine_tuned_llama_healthcare")
|
148 |
-
return "Training completed! Model saved to ./fine_tuned_llama_healthcare"
|
149 |
-
|
150 |
except Exception as e:
|
151 |
-
return f"Error: {
|
152 |
-
|
153 |
-
# Gradio
|
154 |
-
|
155 |
-
|
156 |
-
gr.
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
161 |
|
162 |
-
# Launch the
|
163 |
-
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import LlamaTokenizer, LlamaForCausalLM
|
|
|
3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# Load the fine-tuned model and tokenizer
|
6 |
+
try:
|
7 |
+
tokenizer = LlamaTokenizer.from_pretrained("./fine_tuned_llama2")
|
8 |
+
model = LlamaForCausalLM.from_pretrained("./fine_tuned_llama2")
|
9 |
+
model.eval()
|
10 |
+
print("Model and tokenizer loaded successfully.")
|
11 |
+
except Exception as e:
|
12 |
+
print(f"Error loading model or tokenizer: {e}")
|
13 |
+
|
14 |
+
# Function to predict fraud based on text input
|
15 |
+
def predict(input_text):
|
16 |
+
if not input_text:
|
17 |
+
return "Please enter some text to analyze."
|
18 |
try:
|
19 |
+
# Tokenize input
|
20 |
+
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, padding="max_length", truncation=True)
|
21 |
+
# Generate output
|
22 |
+
with torch.no_grad():
|
23 |
+
outputs = model.generate(**inputs, max_new_tokens=50)
|
24 |
+
# Decode and return result
|
25 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
26 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
except Exception as e:
|
28 |
+
return f"Error during prediction: {e}"
|
29 |
+
|
30 |
+
# Create Gradio interface with text input
|
31 |
+
interface = gr.Interface(
|
32 |
+
fn=predict,
|
33 |
+
inputs=gr.Textbox(
|
34 |
+
lines=2,
|
35 |
+
placeholder="Enter text to analyze (e.g., 'Facility backdates policies. Is this fraudulent?')",
|
36 |
+
label="Input Text"
|
37 |
+
),
|
38 |
+
outputs=gr.Textbox(label="Prediction"),
|
39 |
+
title="Fine-Tune LLaMA 2 for Healthcare Fraud Analysis",
|
40 |
+
description="Test the fine-tuned LLaMA 2 model to detect healthcare fraud. Enter a description of a facility's behavior to analyze."
|
41 |
+
)
|
42 |
|
43 |
+
# Launch the interface
|
44 |
+
interface.launch()
|