from transformers import LlamaForCausalLM, LlamaTokenizer, Trainer, TrainingArguments from transformers import BitsAndBytesConfig import datasets import torch from torch.nn.utils.rnn import pad_sequence from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training from accelerate import Accelerator # Version and CUDA check print(f"PyTorch version: {torch.__version__}") print(f"CUDA version: {torch.version.cuda}") print(f"Is CUDA available: {torch.cuda.is_available()}") print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") # Load Llama model and tokenizer MODEL_ID = "meta-llama/Llama-2-7b-hf" tokenizer = LlamaTokenizer.from_pretrained(MODEL_ID) if tokenizer.pad_token is None: tokenizer.add_special_tokens({'pad_token': '[PAD]'}) # Quantization config quantization_config = BitsAndBytesConfig(load_in_8bit=True) # Load model with FlashAttention 2 model = LlamaForCausalLM.from_pretrained( MODEL_ID, torch_dtype=torch.bfloat16, device_map="auto", quantization_config=quantization_config, attn_implementation="flash_attention_2" ) # Prepare for LoRA model = prepare_model_for_kbit_training(model) peft_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=["q_proj", "k_proj", "v_proj", "o_proj"] ) model = get_peft_model(model, peft_config) model.print_trainable_parameters() # Load dataset dataset = datasets.load_dataset("json", data_files="final_combined_fraud_data.json", field="training_pairs") print("First example from dataset:", dataset["train"][0]) # Tokenization with lists (no tensors) def tokenize_data(example): formatted_text = f"{example['input']} {example['output']}" inputs = tokenizer(formatted_text, truncation=True, max_length=2048) input_ids = inputs["input_ids"] attention_mask = inputs["attention_mask"] labels = input_ids.copy() input_len = len(tokenizer(example['input'])["input_ids"]) labels[:input_len] = [-100] * input_len return { "input_ids": input_ids, "labels": labels, "attention_mask": attention_mask } tokenized_dataset = dataset["train"].map(tokenize_data, batched=False, remove_columns=dataset["train"].column_names) # Print first example (lists with lengths) first_example = tokenized_dataset[0] print("First tokenized example:", {k: (type(v), len(v)) for k, v in first_example.items()}) # Data collator: convert lists to tensors and pad def custom_data_collator(features): input_ids = [torch.tensor(f["input_ids"]) for f in features] attention_mask = [torch.tensor(f["attention_mask"]) for f in features] labels = [torch.tensor(f["labels"]) for f in features] input_ids = pad_sequence(input_ids, batch_first=True, padding_value=tokenizer.pad_token_id) attention_mask = pad_sequence(attention_mask, batch_first=True, padding_value=0) labels = pad_sequence(labels, batch_first=True, padding_value=-100) return { "input_ids": input_ids, "attention_mask": attention_mask, "labels": labels } # Accelerator and training accelerator = Accelerator() training_args = TrainingArguments( output_dir="./fine_tuned_llama2", per_device_train_batch_size=4, gradient_accumulation_steps=4, eval_strategy="steps", eval_steps=50, save_strategy="steps", save_steps=100, save_total_limit=3, num_train_epochs=3, learning_rate=2e-5, weight_decay=0.01, logging_dir="./logs", logging_steps=10, bf16=True, gradient_checkpointing=True, optim="adamw_torch", warmup_steps=100 ) trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_dataset.select(range(90)), eval_dataset=tokenized_dataset.select(range(90, 112)), data_collator=custom_data_collator ) trainer.train() model.save_pretrained("./fine_tuned_llama2") tokenizer.save_pretrained("./fine_tuned_llama2") print("Training complete. Model and tokenizer saved to ./fine_tuned_llama2")