File size: 5,934 Bytes
6f2b1d7 9b2c756 2cf39df 1bf4b77 fab7ed8 2cf39df 36b5bed fab7ed8 36b5bed 9b2c756 2cf39df 9b2c756 2cf39df 9b2c756 2cf39df 50c6bec 2cf39df 50c6bec fab7ed8 6f2b1d7 fab7ed8 6f2b1d7 5997cdc fab7ed8 5997cdc 36b5bed fab7ed8 2cf39df 36b5bed 2cf39df 36b5bed 2cf39df 36b5bed 2cf39df 36b5bed 2cf39df 36b5bed 2cf39df 36b5bed 2cf39df 36b5bed 2cf39df 36b5bed 2cf39df 36b5bed 2cf39df 36b5bed 2cf39df 36b5bed 1bf4b77 36b5bed 2cf39df 36b5bed 2cf39df 36b5bed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
# app.py
# Gradio app for Llama 4 Maverick healthcare fraud detection (text-only with CPU offloading)
import gradio as gr
from transformers import AutoTokenizer, Llama4ForConditionalGeneration, BitsAndBytesConfig
import datasets
import torch
import json
import os
import pdfplumber
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from accelerate import Accelerator
import huggingface_hub
import re
import nltk
from nltk.tokenize import sent_tokenize
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
# Import the HealthcareFraudAnalyzer
from document_analyzer import HealthcareFraudAnalyzer
# Debug: Confirm file version
print("Running updated app.py with CPU offloading (version: 2025-04-21 v3)")
# Debug: Print environment variables
print("Environment variables:", dict(os.environ))
# Retrieve the token from secrets
LLama = os.getenv("LLama")
if not LLama:
raise ValueError("LLama token not found. Set it in Hugging Face Space secrets as 'LLama'.")
# Debug: Print token (first 5 chars)
print(f"Retrieved LLama token: {LLama[:5]}...")
# Authenticate with Hugging Face
huggingface_hub.login(token=LLama)
# Model setup
MODEL_ID = "meta-llama/Llama-4-Maverick-17B-128E-Instruct"
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
# Explicit quantization configuration
quant_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_enable_fp32_cpu_offload=True
)
# Custom device map for CPU offloading (more layers to CPU)
device_map = {
"model.embed_tokens": 0,
"model.layers.0-10": 0, # First 11 layers on GPU
"model.layers.11-31": "cpu", # Remaining layers on CPU
"model.norm": 0,
"lm_head": 0
}
# Debug: Confirm offloading settings
print("Loading model with: quantization_config=", quant_config, ", device_map=", device_map)
# Load model with 8-bit quantization and CPU offloading
try:
model = Llama4ForConditionalGeneration.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16,
device_map=device_map,
quantization_config=quant_config,
attn_implementation="flex_attention"
)
except Exception as e:
print(f"Model loading failed: {str(e)}")
raise
# Resize token embeddings if pad token was added
model.resize_token_embeddings(len(tokenizer))
# Initialize Accelerator
accelerator = Accelerator()
model = accelerator.prepare(model)
# Initialize analyzer
analyzer = HealthcareFraudAnalyzer(model, tokenizer, accelerator)
# Training function
def fine_tune_model(training_data_file, epochs=1, batch_size=2):
try:
dataset = datasets.load_dataset('json', data_files=training_data_file)
dataset = dataset['train']
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
model = prepare_model_for_kbit_training(model)
model = get_peft_model(model, lora_config)
training_args = {
"output_dir": "./results",
"num_train_epochs": int(epochs),
"per_device_train_batch_size": int(batch_size),
"gradient_accumulation_steps": 8,
"optim": "adamw_torch",
"save_steps": 500,
"logging_steps": 100,
"learning_rate": 2e-4,
"fp16": True,
"max_grad_norm": 0.3,
"warmup_ratio": 0.03,
"lr_scheduler_type": "cosine"
}
trainer = accelerator.prepare(
datasets.Trainer(
model=model,
args=datasets.TrainingArguments(**training_args),
train_dataset=dataset,
)
)
trainer.train()
model.save_pretrained("./fine_tuned_model")
return f"Training completed with {len(dataset)} examples!"
except Exception as e:
return f"Training failed: {str(e)}"
# Document analysis function
def analyze_document(pdf_file):
try:
with pdfplumber.open(pdf_file) as pdf:
text = ""
for page in pdf.pages:
text += page.extract_text() or ""
sentences = sent_tokenize(text)
fraud_indicators = analyzer.analyze_document(sentences)
if not fraud_indicators:
return "No fraud indicators detected."
report = "Potential Fraud Indicators Detected:\n"
for indicator in fraud_indicators:
report += f"- {indicator['sentence']}\n Reason: {indicator['reason']}\n Confidence: {indicator['confidence']:.2f}\n"
return report
except Exception as e:
return f"Analysis failed: {str(e)}"
# Gradio interface
with gr.Blocks(theme=gr.themes.Default()) as demo:
gr.Markdown("# Llama 4 Healthcare Fraud Detection")
with gr.Tab("Fine-Tune Model"):
training_data = gr.File(label="Upload Training JSON File")
epochs = gr.Slider(minimum=1, maximum=10, value=1, step=1, label="Epochs")
batch_size = gr.Slider(minimum=1, maximum=4, value=2, step=1, label="Batch Size")
train_button = gr.Button("Fine-Tune")
train_output = gr.Textbox(label="Training Output")
train_button.click(
fn=fine_tune_model,
inputs=[training_data, epochs, batch_size],
outputs=train_output
)
with gr.Tab("Analyze Document"):
pdf_input = gr.File(label="Upload PDF Document")
analyze_button = gr.Button("Analyze")
analysis_output = gr.Textbox(label="Analysis Results")
analyze_button.click(
fn=analyze_document,
inputs=pdf_input,
outputs=analysis_output
)
demo.launch(server_name="0.0.0.0", server_port=7860) |