Cylanoid's picture
Upload 4 files
d9cfebf verified
raw
history blame
4.26 kB
# train_llama4.py
# Script to fine-tune Llama 4 Maverick for healthcare fraud detection
from transformers import AutoProcessor, Llama4ForConditionalGeneration, Trainer, TrainingArguments
from transformers import BitsAndBytesConfig
import datasets
import torch
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from accelerate import Accelerator
import huggingface_hub
import os
# Version and CUDA check
print(f"PyTorch version: {torch.__version__}")
print(f"CUDA version: {torch.version.cuda}")
print(f"Is CUDA available: {torch.cuda.is_available()}")
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
# Authenticate with Hugging Face
LLama = os.getenv("LLama")
if not LLama:
raise ValueError("LLama token not found. Set it in Hugging Face Space secrets as 'LLama'.")
huggingface_hub.login(token=LLama)
# Load Llama 4 model and processor
MODEL_ID = "meta-llama/Llama-4-Maverick-17B-128E-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
# Quantization config for A100 80 GB VRAM
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
model = Llama4ForConditionalGeneration.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config,
attn_implementation="flex_attention"
)
# Prepare for LoRA
model = prepare_model_for_kbit_training(model)
peft_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"]
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
# Load dataset
dataset = datasets.load_dataset("json", data_files="Bingaman_training_data.json", field="training_pairs")
print("First example from dataset:", dataset["train"][0])
# Tokenization
def tokenize_data(example):
messages = [
{
"role": "user",
"content": [{"type": "text", "text": example['input']}]
},
{
"role": "assistant",
"content": [{"type": "text", "text": example['output']}]
}
]
formatted_text = processor.apply_chat_template(messages, add_generation_prompt=False)
inputs = processor(formatted_text, padding="max_length", truncation=True, max_length=4096, return_tensors="pt")
input_ids = inputs["input_ids"].squeeze(0).tolist()
attention_mask = inputs["attention_mask"].squeeze(0).tolist()
labels = input_ids.copy()
return {
"input_ids": input_ids,
"labels": labels,
"attention_mask": attention_mask
}
tokenized_dataset = dataset["train"].map(tokenize_data, batched=False, remove_columns=dataset["train"].column_names)
print("First tokenized example:", {k: (type(v), len(v)) for k, v in tokenized_dataset[0].items()})
# Data collator
def custom_data_collator(features):
input_ids = [torch.tensor(f["input_ids"]) for f in features]
attention_mask = [torch.tensor(f["attention_mask"]) for f in features]
labels = [torch.tensor(f["labels"]) for f in features]
return {
"input_ids": torch.stack(input_ids),
"attention_mask": torch.stack(attention_mask),
"labels": torch.stack(labels)
}
# Training setup
accelerator = Accelerator()
training_args = TrainingArguments(
output_dir="./fine_tuned_llama4_healthcare",
per_device_train_batch_size=2,
gradient_accumulation_steps=8,
eval_strategy="steps",
eval_steps=10,
save_strategy="steps",
save_steps=20,
save_total_limit=3,
num_train_epochs=5,
learning_rate=2e-5,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=5,
bf16=True,
gradient_checkpointing=True,
optim="adamw_torch",
warmup_steps=50
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
eval_dataset=tokenized_dataset.select(range(min(5, len(tokenized_dataset)))),
data_collator=custom_data_collator
)
# Start training
trainer.train()
model.save_pretrained("./fine_tuned_llama4_healthcare")
processor.save_pretrained("./fine_tuned_llama4_healthcare")
print("Training complete. Model and processor saved to ./fine_tuned_llama4_healthcare")