|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import nltk | 
					
						
						|  | from nltk.tokenize import sent_tokenize | 
					
						
						|  |  | 
					
						
						|  | class HealthcareFraudAnalyzer: | 
					
						
						|  | def __init__(self, model, tokenizer, accelerator): | 
					
						
						|  | self.model = model | 
					
						
						|  | self.tokenizer = tokenizer | 
					
						
						|  | self.accelerator = accelerator | 
					
						
						|  | self.device = self.accelerator.device | 
					
						
						|  | try: | 
					
						
						|  | nltk.data.find('tokenizers/punkt') | 
					
						
						|  | except LookupError: | 
					
						
						|  | nltk.download('punkt') | 
					
						
						|  |  | 
					
						
						|  | def analyze_document(self, sentences): | 
					
						
						|  | fraud_indicators = [] | 
					
						
						|  | for sentence in sentences: | 
					
						
						|  | prompt = ( | 
					
						
						|  | f"Analyze the following sentence for potential healthcare fraud indicators, " | 
					
						
						|  | f"such as consent violations, medication misuse, or billing irregularities. " | 
					
						
						|  | f"Provide a reason and confidence score (0-1). " | 
					
						
						|  | f"Sentence: {sentence}\nOutput format: {{'fraud_detected': bool, 'reason': str, 'confidence': float}}" | 
					
						
						|  | ) | 
					
						
						|  | inputs = self.tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512).to(self.device) | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | outputs = self.model.generate( | 
					
						
						|  | **inputs, | 
					
						
						|  | max_new_tokens=256, | 
					
						
						|  | temperature=0.7, | 
					
						
						|  | top_p=0.9, | 
					
						
						|  | do_sample=True | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) | 
					
						
						|  | try: | 
					
						
						|  | result = eval(response) if response.startswith("{") else {"fraud_detected": False, "reason": "Invalid response", "confidence": 0.0} | 
					
						
						|  | if result["fraud_detected"]: | 
					
						
						|  | fraud_indicators.append({ | 
					
						
						|  | "sentence": sentence, | 
					
						
						|  | "reason": result["reason"], | 
					
						
						|  | "confidence": result["confidence"] | 
					
						
						|  | }) | 
					
						
						|  | except: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | return fraud_indicators |