Spaces:
Running
Running
Added streaming in the web ui
Browse files- search_agent_ui.py +51 -17
- web_rag.py +11 -3
search_agent_ui.py
CHANGED
@@ -1,13 +1,15 @@
|
|
1 |
-
import
|
2 |
|
|
|
3 |
import streamlit as st
|
4 |
|
5 |
-
import web_rag as wr
|
6 |
-
import web_crawler as wc
|
7 |
-
|
8 |
from langchain_core.tracers.langchain import LangChainTracer
|
|
|
9 |
from langsmith.client import Client
|
10 |
|
|
|
|
|
|
|
11 |
dotenv.load_dotenv()
|
12 |
|
13 |
ls_tracer = LangChainTracer(
|
@@ -15,6 +17,14 @@ ls_tracer = LangChainTracer(
|
|
15 |
client=Client()
|
16 |
)
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
chat = wr.get_chat_llm(provider="cohere")
|
20 |
|
@@ -22,40 +32,64 @@ st.title("π Simple Search Agent π¬")
|
|
22 |
|
23 |
if "messages" not in st.session_state:
|
24 |
st.session_state["messages"] = [{"role": "assistant", "content": "How can I help you?"}]
|
|
|
|
|
|
|
25 |
|
26 |
for message in st.session_state.messages:
|
27 |
st.chat_message(message["role"]).write(message["content"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
if prompt := st.chat_input():
|
|
|
|
|
30 |
|
31 |
st.chat_message("user").write(prompt)
|
32 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
33 |
-
|
34 |
message = "I first need to do some research"
|
35 |
st.chat_message("assistant").write(message)
|
36 |
st.session_state.messages.append({"role": "assistant", "content": message})
|
37 |
-
|
38 |
with st.spinner("Optimizing search query"):
|
39 |
optimize_search_query = wr.optimize_search_query(chat, query=prompt, callbacks=[ls_tracer])
|
40 |
-
|
41 |
message = f"I'll search the web for: {optimize_search_query}"
|
42 |
st.chat_message("assistant").write(message)
|
43 |
st.session_state.messages.append({"role": "assistant", "content": message})
|
44 |
-
|
45 |
-
|
46 |
with st.spinner(f"Searching the web for: {optimize_search_query}"):
|
47 |
sources = wc.get_sources(optimize_search_query, max_pages=20)
|
48 |
-
|
49 |
with st.spinner(f"I'm now retrieveing the {len(sources)} webpages and documents I found (be patient)"):
|
50 |
contents = wc.get_links_contents(sources)
|
51 |
|
52 |
-
|
53 |
with st.spinner( f"Reading through the {len(contents)} sources I managed to retrieve"):
|
54 |
vector_store = wc.vectorize(contents)
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
|
|
1 |
+
import datetime
|
2 |
|
3 |
+
import dotenv
|
4 |
import streamlit as st
|
5 |
|
|
|
|
|
|
|
6 |
from langchain_core.tracers.langchain import LangChainTracer
|
7 |
+
from langchain.callbacks.base import BaseCallbackHandler
|
8 |
from langsmith.client import Client
|
9 |
|
10 |
+
import web_rag as wr
|
11 |
+
import web_crawler as wc
|
12 |
+
|
13 |
dotenv.load_dotenv()
|
14 |
|
15 |
ls_tracer = LangChainTracer(
|
|
|
17 |
client=Client()
|
18 |
)
|
19 |
|
20 |
+
class StreamHandler(BaseCallbackHandler):
|
21 |
+
def __init__(self, container, initial_text=""):
|
22 |
+
self.container = container
|
23 |
+
self.text = initial_text
|
24 |
+
|
25 |
+
def on_llm_new_token(self, token: str, **kwargs):
|
26 |
+
self.text += token
|
27 |
+
self.container.markdown(self.text)
|
28 |
|
29 |
chat = wr.get_chat_llm(provider="cohere")
|
30 |
|
|
|
32 |
|
33 |
if "messages" not in st.session_state:
|
34 |
st.session_state["messages"] = [{"role": "assistant", "content": "How can I help you?"}]
|
35 |
+
|
36 |
+
if "input_disabled" not in st.session_state:
|
37 |
+
st.session_state["input_disabled"] = False
|
38 |
|
39 |
for message in st.session_state.messages:
|
40 |
st.chat_message(message["role"]).write(message["content"])
|
41 |
+
if message["role"] == "assistant" and 'message_id' in message:
|
42 |
+
st.download_button(
|
43 |
+
label="Download",
|
44 |
+
data=message["content"],
|
45 |
+
file_name=f"{message['message_id']}.txt",
|
46 |
+
mime="text/plain"
|
47 |
+
)
|
48 |
|
49 |
+
if prompt := st.chat_input("Enter you instructions...", disabled=st.session_state["input_disabled"] ):
|
50 |
+
|
51 |
+
st.session_state["input_disabled"] = True
|
52 |
|
53 |
st.chat_message("user").write(prompt)
|
54 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
55 |
+
|
56 |
message = "I first need to do some research"
|
57 |
st.chat_message("assistant").write(message)
|
58 |
st.session_state.messages.append({"role": "assistant", "content": message})
|
59 |
+
|
60 |
with st.spinner("Optimizing search query"):
|
61 |
optimize_search_query = wr.optimize_search_query(chat, query=prompt, callbacks=[ls_tracer])
|
62 |
+
|
63 |
message = f"I'll search the web for: {optimize_search_query}"
|
64 |
st.chat_message("assistant").write(message)
|
65 |
st.session_state.messages.append({"role": "assistant", "content": message})
|
66 |
+
|
|
|
67 |
with st.spinner(f"Searching the web for: {optimize_search_query}"):
|
68 |
sources = wc.get_sources(optimize_search_query, max_pages=20)
|
69 |
+
|
70 |
with st.spinner(f"I'm now retrieveing the {len(sources)} webpages and documents I found (be patient)"):
|
71 |
contents = wc.get_links_contents(sources)
|
72 |
|
|
|
73 |
with st.spinner( f"Reading through the {len(contents)} sources I managed to retrieve"):
|
74 |
vector_store = wc.vectorize(contents)
|
75 |
+
|
76 |
+
message = f"Got {vector_store.index.ntotal} chunk of data"
|
77 |
+
st.chat_message("assistant").write(message)
|
78 |
+
st.session_state.messages.append({"role": "assistant", "content": message})
|
79 |
|
80 |
+
rag_prompt = wr.build_rag_prompt(prompt, optimize_search_query, vector_store, top_k=5, callbacks=[ls_tracer])
|
81 |
+
with st.chat_message("assistant"):
|
82 |
+
st_cb = StreamHandler(st.empty())
|
83 |
+
result = chat.invoke(rag_prompt, stream=True, config={ "callbacks": [st_cb, ls_tracer]})
|
84 |
+
response = result.content.strip()
|
85 |
+
message_id = f"{prompt}{datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
|
86 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
87 |
+
if st.session_state.messages[-1]["role"] == "assistant":
|
88 |
+
st.download_button(
|
89 |
+
label="Download",
|
90 |
+
data=st.session_state.messages[-1]["content"],
|
91 |
+
file_name=f"{message_id}.txt",
|
92 |
+
mime="text/plain"
|
93 |
+
)
|
94 |
+
st.session_state["input_disabled"] = False
|
95 |
|
web_rag.py
CHANGED
@@ -120,6 +120,9 @@ def get_optimized_search_messages(query):
|
|
120 |
Example:
|
121 |
Question: Write a short article about the solar system in the style of donald trump
|
122 |
Search query: solar system**
|
|
|
|
|
|
|
123 |
"""
|
124 |
)
|
125 |
human_message = HumanMessage(
|
@@ -209,9 +212,14 @@ def multi_query_rag(chat_llm, question, search_query, vectorstore, callbacks = [
|
|
209 |
return response.content
|
210 |
|
211 |
|
212 |
-
def
|
213 |
-
unique_docs = vectorstore.similarity_search(
|
|
|
214 |
context = format_docs(unique_docs)
|
215 |
prompt = get_rag_prompt_template().format(query=question, context=context)
|
|
|
|
|
|
|
|
|
216 |
response = chat_llm.invoke(prompt, config={"callbacks": callbacks})
|
217 |
-
return response.content
|
|
|
120 |
Example:
|
121 |
Question: Write a short article about the solar system in the style of donald trump
|
122 |
Search query: solar system**
|
123 |
+
Exmaple:
|
124 |
+
Question: Write a short linkedin about how the "freakeconomics" book previsions didn't pan out
|
125 |
+
Search query: freakeconomics book predictions failed**
|
126 |
"""
|
127 |
)
|
128 |
human_message = HumanMessage(
|
|
|
212 |
return response.content
|
213 |
|
214 |
|
215 |
+
def build_rag_prompt(question, search_query, vectorstore, top_k = 10, callbacks = []):
|
216 |
+
unique_docs = vectorstore.similarity_search(
|
217 |
+
search_query, k=top_k, callbacks=callbacks, verbose=True)
|
218 |
context = format_docs(unique_docs)
|
219 |
prompt = get_rag_prompt_template().format(query=question, context=context)
|
220 |
+
return prompt
|
221 |
+
|
222 |
+
def query_rag(chat_llm, question, search_query, vectorstore, callbacks = []):
|
223 |
+
prompt = build_rag_prompt(question, search_query, vectorstore, callbacks)
|
224 |
response = chat_llm.invoke(prompt, config={"callbacks": callbacks})
|
225 |
+
return response.content
|