Spaces:
Runtime error
Runtime error
from dataclasses import dataclass, make_dataclass | |
from enum import Enum | |
import pandas as pd | |
from src.about import Tasks | |
def fields(raw_class): | |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] | |
# These classes are for user facing column names, | |
# to avoid having to change them all around the code | |
# when a modif is needed | |
class ColumnContent: | |
name: str | |
type: str | |
displayed_by_default: bool | |
hidden: bool = False | |
never_hidden: bool = False | |
## Leaderboard columns | |
auto_eval_column_dict = [] | |
# Init | |
#auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "markdown", True, never_hidden=True)]) | |
auto_eval_column_dict.append(["model_name", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)]) | |
auto_eval_column_dict.append(["paper", ColumnContent, ColumnContent("Paper", "markdown", False)]) | |
auto_eval_column_dict.append(["training_dataset_type", ColumnContent, ColumnContent("Training Dataset Type", "markdown", False, hidden=True)]) | |
auto_eval_column_dict.append(["training_dataset", ColumnContent, ColumnContent("Training Dataset", "markdown", True, never_hidden=True)]) | |
#Scores | |
for task in Tasks: | |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) | |
# Model information | |
#auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "markdown", False)]) | |
auto_eval_column_dict.append(["model_backbone_type", ColumnContent, ColumnContent("Model Backbone Type", "markdown", False, hidden=True)]) | |
auto_eval_column_dict.append(["model_backbone", ColumnContent, ColumnContent("Model Backbone", "str", True)]) | |
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "markdown", False)]) | |
auto_eval_column_dict.append(["model_parameters", ColumnContent, ColumnContent("Parameter Count", "markdown", False)]) | |
auto_eval_column_dict.append(["model_link", ColumnContent, ColumnContent("Link To Model", "markdown", True)]) | |
auto_eval_column_dict.append(["testing_type", ColumnContent, ColumnContent("Testing Type", "str", False, hidden=True)]) | |
# We use make dataclass to dynamically fill the scores from Tasks | |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) | |
## For the queue columns in the submission tab | |
class EvalQueueColumn: # Queue column | |
model = ColumnContent("model", "str", True) | |
precision = ColumnContent("precision", "str", True) | |
training_dataset = ColumnContent("training_dataset", "str", True) | |
testing_type = ColumnContent("testing_type", "str", True) | |
status = ColumnContent("status", "str", True) | |
## All the model information that we might need | |
class ModelDetails: | |
name: str | |
display_name: str = "" | |
symbol: str = "" # emoji | |
class ModelType(Enum): | |
PT = ModelDetails(name="pretrained", symbol="π’") | |
FT = ModelDetails(name="fine-tuned", symbol="πΆ") | |
IFT = ModelDetails(name="instruction-tuned", symbol="β") | |
RL = ModelDetails(name="RL-tuned", symbol="π¦") | |
Other = ModelDetails(name="Other", symbol="?") | |
def to_str(self, separator=" "): | |
return f"{self.value.symbol}{separator}{self.value.name}" | |
def from_str(type): | |
if "fine-tuned" in type or "πΆ" in type: | |
return ModelType.FT | |
if "pretrained" in type or "π’" in type: | |
return ModelType.PT | |
if "RL-tuned" in type or "π¦" in type: | |
return ModelType.RL | |
if "instruction-tuned" in type or "β" in type: | |
return ModelType.IFT | |
return ModelType.Other | |
class Precision(Enum): | |
float32 = "float32" | |
Other = "Other" | |
def from_str(precision): | |
if precision in ["torch.float32", "float32"]: | |
return Precision.float32 | |
return Precision.Other | |
# Column selection | |
COLS = [c.name for c in fields(AutoEvalColumn)] | |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] | |
BENCHMARK_COLS = [t.value.col_name for t in Tasks] | |